
PuzzleTensor: A Method-Agnostic Data Transformation for
Compact Tensor Factorization

Yong-chan Park

Seoul National University

Seoul, Republic of Korea

wjdakf3948@snu.ac.kr

Kisoo Kim

Seoul National University

Seoul, Republic of Korea

kisooofficial@snu.ac.kr

U Kang

Seoul National University

Seoul, Republic of Korea

ukang@snu.ac.kr

Abstract
How can we achieve compact tensor representations without sac-

rificing reconstruction accuracy? Tensor decomposition is a cor-

nerstone of modern data mining and machine learning, enabling

efficient representations of multi-dimensional data through funda-

mental algorithms such as CP, Tucker, and Tensor-Train decom-

positions. However, directly applying these methods to raw data

often results in high target ranks, poor reconstruction accuracy, and

computational inefficiencies, as the data may not naturally conform

to the low-rank structures these methods assume.

In this paper, we propose PuzzleTensor, a method-agnostic data

transformation technique for compact tensor factorization. Given

a data tensor, PuzzleTensor “solves the puzzle” by shifting each

hyperslice of the tensor to achieve accurate decompositions with

significantly lower target ranks. PuzzleTensor offers three key ad-

vantages: (1) it is independent of specific decomposition methods,

making it seamlessly compatible with various algorithms, such as

CP, Tucker, and Tensor-Train decompositions; (2) it works under

weak data assumptions, showing robust performance across both

sparse and dense data, regardless of the rank; (3) it is inherently

explainable, allowing clear interpretation of its learnable parame-

ters and layer-wise operations. Extensive experiments show that

PuzzleTensor consistently outperforms direct tensor decomposition

approaches by achieving lower reconstruction errors and reducing

the required target rank, making it a versatile and practical tool for

compact tensor factorization in real-world applications.

CCS Concepts
• Computing methodologies→ Factorization methods.

Keywords
Tensor decomposition, Low-rank approximation, Data compression

ACM Reference Format:
Yong-chan Park, Kisoo Kim, and U Kang. 2025. PuzzleTensor: A Method-

Agnostic Data Transformation for Compact Tensor Factorization. In Pro-
ceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3711896.3737095

This work is licensed under a Creative Commons Attribution 4.0 International License.

KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/25/08

https://doi.org/10.1145/3711896.3737095

1 Introduction
Efficient high-dimensional data representations are critical for nu-

merous applications, including data mining [5, 11, 13, 14, 27, 41, 46],

machine learning [10, 22, 28, 44], recommender systems [15, 16,

20, 21, 26], signal processing [29, 45], and scientific computing

[18, 38, 40, 43]. Tensor decomposition algorithms—such as CAN-

DECOMP/PARAFAC (CP) [19], Tucker [8], and Tensor-Train (TT)

[31]—have emerged as essential tools in these fields, offering com-

putational efficiency and insights into underlying data structures.

However, directly applying thesemethods to rawmulti-dimensional

data often leads to high target ranks, poor reconstruction accuracy,

or computational inefficiencies, as real-world tensors rarely con-

form to the strict low-rank or sparsity assumptions that many

decomposition techniques depend upon [4, 35, 37, 39].

As an illustration, consider Figure 1, where 𝑋 denotes the origi-

nal data and 𝑋 is its rank-1 approximation, resulting in a relatively

large error. Shifting each column of 𝑋 upward by a certain amount

leads to a better-aligned matrix 𝑍 , significantly reducing the rank-1

approximation error. A key insight is that the rank of a tensor is

closely tied to how its slices and modes are spatially arranged. In

practice, high rank often stems from misalignment or heterogene-

ity in the data, where local patterns do not align naturally across

modes. This raises a fundamental question: how can we systemati-

cally transform the data so that common structures align naturally,

allowing lower-rank factorizations without sacrificing accuracy?

In this paper, we propose PuzzleTensor, a method-agnostic data

transformation technique designed for compact tensor factorization.

Inspired by the concept of rearranging puzzle pieces to form a

cohesive image, PuzzleTensor shifts the hyperslices of a tensor,

transforming its structure to enable accurate decompositions with

significantly reduced target ranks (see Figure 2). PuzzleTensor offers

three distinct advantages that make it a practical tool for a wide

range of real-world applications:

(1) Method-agnostic flexibility. Unlike methods tied to specific

algorithms, PuzzleTensor integrates seamlessly with various

decomposition frameworks, from CP and Tucker to TT, broad-

ening its applicability across diverse domains.

(2) Weak data assumptions. PuzzleTensor achieves robust per-
formance under minimal constraints, making it suitable for

datasets with varying levels of sparsity and rank distributions.

(3) Explainability. Each learnable parameter and transformation

layer in PuzzleTensor is interpretable, allowing users to un-

derstand how the method optimizes tensor representations for

improved performance.

Extensive experiments on both real-world and synthetic datasets

demonstrate the efficacy of PuzzleTensor. Compared to the direct

https://doi.org/10.1145/3711896.3737095
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737095

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Yong-chan Park, Kisoo Kim, and U Kang

10
0

0 010
0 0

0
00

10

0 0 10

1.1 2.9 3.7

6.8

5.2

3.4 2.0

1.9

1.8 4.8

1.9 5.2

1.5 4.0

0.6 1.5

6.3

6.3

4.8

1.8

5.8

3.7

2.9

1.1

3.4

Align

10 10
10

10 100
0

0

0

0

0

10
100

0 0
0
0 0

11.

9.3

0.0 0.0 0.0

0.0

0.0

0.0

11.

9.3

11.

9.3

11.

9.3

5.6

5.0

0.0

0.0 0.0 0.00.0

0.0 0.0 0.00.0

Rank-1
Approx.

10

0
0

0
0

0 0
0 0

0 0

10 10
10 10 10 10

Rank-1
Approx.

Figure 1: An example of how alignment improves low-rank
approximation. Given raw data 𝑋 , its rank-1 approximation
𝑋 exhibits a large error. By aligning columns to form 𝑍 , the
rank-1 approximation 𝑍 achieves significantly lower error.
This shows that reorganizing the data reveals underlying
low-rank structures that remain hidden in the raw form.

decomposition approaches, it consistently achieves lower recon-

struction error across various tensor factorization methods, under-

scoring the versatility and robustness of PuzzleTensor as a practical

tool for compact tensor representations.

We summarize our contributions as follows:

• Method.We present PuzzleTensor, a method-agnostic data trans-

formation for compact tensor factorization.

• Analysis. We provide a theoretical analysis demonstrating that

our proposed optimization technique induces a low-rank struc-

ture in the resulting tensor. Additionally, we derive the parameter

count and time complexity of PuzzleTensor.

• Performance. PuzzleTensor consistently enhances the perfor-

mance of various tensor decomposition methods, including CP,

Tucker, and TT in terms of tensor compression.

We provide the source code and datasets used in our paper at

https://github.com/snudatalab/PuzzleTensor.

2 Related Works
We provide an overview of foundational tensor decomposition

methods, and explore how they have been utilized for data com-

pression in various applications. We also highlight their limitations,

motivating the need for more flexible and scalable approaches.

2.1 Overview of Tensor Decompositions
Tensor decomposition methods aim to express a high-dimensional

tensor in a factorized form that reduces storage and computational

complexity while preserving essential data characteristics. Below,

we provide a brief explanation of key decomposition techniques

with their respective mathematical formulations.

CP Decomposition. The CP decomposition factorizes an 𝑛-

mode tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑛 into a sum of rank-1 tensors:

X ≈
∑︁𝑅

𝑟=1
𝒂 (1)𝑟 ◦ 𝒂 (2)𝑟 ◦ · · · ◦ 𝒂 (𝑛)𝑟 ,

where 𝑅 is the rank of the decomposition, 𝒂 (𝑘)𝑟 ∈ R𝐼𝑘 are the factor

vectors for mode 𝑘 , and ◦ denotes the outer product. In matrix form,

the decomposition for each mode 𝑘 can be expressed as:

𝑿 (𝑘) ≈ 𝑨(𝑘)
(
𝑨(𝑛) ⊙ · · · ⊙ 𝑨(𝑘+1) ⊙ 𝑨(𝑘−1) ⊙ · · · ⊙ 𝑨(1)

)⊺
,

where 𝑿 (𝑘) is the mode-𝑘 unfolding of X, 𝑨(𝑘)
are the factor ma-

trices, and ⊙ denotes the Khatri-Rao product.

Tucker Decomposition. The Tucker decomposition general-

izes CP by introducing a core tensor G ∈ R𝐽1×𝐽2×···×𝐽𝑛 and factor

matrices 𝑼 (𝑘) ∈ R𝐼𝑘×𝐽𝑘 :

X ≈ G ×1 𝑼
(1) ×2 𝑼

(2) · · · ×𝑛 𝑼 (𝑛) ,

where ×𝑘 denotes the mode-𝑘 product between a tensor and a ma-

trix. The core tensor captures the interaction between components

across all modes, while the factor matrices reduce the dimensional-

ity of each mode.

Tensor-Train Decomposition. The Tensor-Train (TT) decom-

position represents an 𝑛-mode tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑛 as a chain

of 3D tensors (cores) G (𝑘) ∈ R𝑅𝑘−1×𝐼𝑘×𝑅𝑘 :

X(𝑖1, 𝑖2, . . . , 𝑖𝑛) = G (1) (:, 𝑖1, :) · G (2) (:, 𝑖2, :) · · · G (𝑛) (:, 𝑖𝑛, :),

where 𝑅0 = 𝑅𝑛 = 1. In contrast to Tucker decomposition, where

the number of parameters grows exponentially, TT decomposition

reduces this complexity to linear scaling with 𝑛.

Each of these methods provides a valuable framework for inter-

preting multi-dimensional data, but they also come with inherent

limitations. Issues such as rank selection, computational costs for

large dimensions, and potential sensitivity to noise motivate ongo-

ing research in more robust and scalable approaches.

2.2 Tensor Decomposition in Data Compression
This section reviews recent advancements and challenges in tensor-

based lossy compression, emphasizing scalability, domain-specific

applications, and generalization.

Lossy Compression with Scalability Improvements. Recent
advancements in data compression techniques utilize tensor repre-

sentations to handle the increasing complexity ofmulti-dimensional

data, including multi-spectral images, videos, and scientific datasets.

NeuKron [25] compresses sparse reorderable matrices into fixed-

size space with Kronecker products and a recurrent neural network,

achieving high accuracy and scalability. TensorCodec [24] further

improves expressive power by employing Neural Tensor-Train De-

composition (NTTD), leveraging tensor folding to minimize space

usage, and applying mode reordering to reveal exploitable patterns.

BothNeuKron and TensorCodec incorporate specialized pipelines

(e.g., LSTMs, tensor folding, and axis reordering) tightly coupled to

their decomposers. By contrast, PuzzleTensor is a method-agnostic

transformation: it shifts hyperslices via a Fourier-based operation

before any decomposition step. This shift lowers the effective rank,

enabling both classic (CP, Tucker, TT, etc.) and neural methods to

achieve comparable accuracy at significantly smaller target ranks.

Compression with Domain Applications. Numerous studies

propose advanced techniques for compressing high-dimensional

data. Aidini et al. [2] propose a tensor decomposition method that

compresses multi-spectral signals by learning shared bases from

https://github.com/snudatalab/PuzzleTensor

PuzzleTensor: A Method-Agnostic Data Transformation for Compact Tensor Factorization KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

training data. Ballester et al. [3] propose a lossy compression algo-

rithm using Higher-Order Singular Value Decomposition (HOSVD)

and methods like bit-plane, run-length, and arithmetic coding to ef-

ficiently compress multi-dimensional data. Adjeroh et al. [1] tackle

video compression using 3D Discrete Cosine Transform, enhancing

error protection and transmission efficiency over noisy channels.

Despite these advancements, challenges remain in adapting ten-

sor decomposition methods to diverse real-world datasets. Numer-

ous compression schemes depend on strict assumptions about data

structure (e.g., low-rank or sparsity), which often fail in complex sce-

narios. Additionally, existing algorithms balance trade-offs between

compression ratio, reconstruction accuracy, and interpretability.

This emphasizes the need for more adaptable, generalizable solu-

tions less tied to specific data characteristics.

2.3 Discrete Fourier Transform
The Discrete Fourier Transform (DFT) [6, 30, 32–34] of a real or

complex sequence 𝒙 = (𝑥0, 𝑥1, . . . , 𝑥𝑁−1) of length 𝑁 is defined as

𝑥𝑚 = F {𝒙}(𝑚) =
∑︁𝑁−1

𝑛=0
𝑥𝑛 𝑒

−2𝜋𝑖𝑚𝑛/𝑁 , 𝑚 = 0, . . . , 𝑁 − 1.

This transformation maps the time (or spatial) domain sequence

to its frequency-domain representation, thereby facilitating signal

analysis and processing tasks through well-established spectral

methods. The inverse transform that recovers 𝒙 from its frequency-

domain representation �̂� = (𝑥0, 𝑥1, . . . , 𝑥𝑁−1) is given by

𝑥𝑛 = F −1{�̂�}(𝑛) = 1

𝑁

∑︁𝑁−1
𝑚=0

𝑥𝑚 𝑒2𝜋𝑖𝑚𝑛/𝑁 , 𝑛 = 0, . . . , 𝑁 − 1.

For a 𝐷-dimensional array (or tensor) X ∈ C𝑁1×···×𝑁𝐷
, the 𝐷-

dimensional DFT
ˆX(𝑚1, . . . ,𝑚𝐷) is defined by applying the one-

dimensional DFT independently along each dimension:

𝑁1−1∑︁
𝑛1=0

· · ·
𝑁𝐷−1∑︁
𝑛𝐷=0

X(𝑛1, . . . , 𝑛𝐷)𝑒
−2𝜋𝑖

(𝑛1𝑚1

𝑁1

+···+𝑛𝐷𝑚𝐷

𝑁𝐷

)
,

where𝑚 𝑗 = 0, . . . , 𝑁 𝑗 − 1 for each 𝑗 = 1, . . . , 𝐷 .

3 Proposed Method
We propose PuzzleTensor, a method-agnostic data transformation

technique for low-rank tensor factorization. Before delving into the

specifics of our method, we aim to answer the following question:

Why is shifting hyperslices an effective strategy for inducing
low-rank structures in tensors? This question lies at the heart of

our work and motivates the design of PuzzleTensor. We argue that

shifting offers a set of benefits for efficiently reducing tensor rank:

• Shift-Induced Data Alignment. The rank of a tensor is closely

tied to the interaction between its slices, modes, and the spatial

arrangement of its data. In practice, a high rank often arises

from misalignment or heterogeneity in the tensor data, where

local patterns in different hyperslices are not well-aligned across

modes. Shifting hyperslices modifies the spatial arrangement

of the tensor, aligning similar patterns along different modes

and improving the coherence of the data. This reorganization

reduces the effective rank by minimizing redundant, disjoint, or

orthogonal components.

• Perfect Reconstruction. Shifts are inherently invertible opera-

tions. Reversing both the direction (sign) and the sequence (order)

1Yong-chan Park (SNU)

Shift

axis=1

Shift

axis=2

Shift

axis=3

× 𝐿

PuzzleTensor

Input Data

Tensor

Output Data

Tensor

(Low rank)

(a) Overview of PuzzleTensor

15Yong-chan Park (SNU)

11 12 13

21 22 23

31 32 33

22 23 21

32 33 31

12 13 11

21 22 23

31 32 33

11 12 13

+2

+2

(b) Example of shifting a hyperslice (frontmost; axis=1)

Figure 2: (a) Overview of PuzzleTensor. Given a 𝐷-mode ten-
sor, it shifts each (𝐷−1)-dimensional hyperslice along all axes
to enable accurate factorization with reduced target ranks.
(b) An illustration of shifting the first (frontmost) hyperslice
for axis=1. A hyperslice has (𝐷 − 1) possible shift directions,
and any indices exceeding the boundary wrap around to the
beginning in a circular manner. Note that each hyperslice
may be shifted by different amounts.

of the shifts restores the original data with no loss of information.

This perfect reversibility contrasts with many other transforma-

tions that introduce residual approximations or require additional

constraints to be inverted accurately.

• Minimal Learnable Parameters.Unlike transformationswhose

parameter spaces grow exponentially with the dimensionality

of the tensor, our shift-based method needs to learn only the

offset for each hyperslice and axis. In practice, this leads to a

parameter count that scales linearly with the number of slices,

rather than exponentially with the tensor’s modes or sizes. Con-

sequently, the overall parameter budget remains manageable

even for high-dimensional data.

• Interpretability. Because shifts re-index the data in a straight-

forward way, the learned offsets are easy to interpret. One can

readily visualize which portions of each hyperslice are being

brought together or moved apart, offering a clear rationale for

how the data are restructured to reveal potential low-rank pat-

terns. In contrast, many black-box transformations do not provide

such intuitive insights into the resulting representations.

These properties make the shift-based transformation a powerful

and efficient tool for reducing the effective rank of tensors.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Yong-chan Park, Kisoo Kim, and U Kang

In this context, the challenges and ideas behind this work are

summarized into three core aspects:

(1) Learning the Discrete Shift Operation: Shifting hyperslices

of a tensor along specific axes is inherently a discrete operation,

which poses a significant challenge for gradient-based optimiza-

tion. To address this, we leverage the properties of the Fourier

transform, which allows us to relax discrete shift operations

into continuous ones on the real domain. By reformulating the

operation in the frequency domain, we ensure that it becomes

differentiable and compatible with standard optimization tech-

niques (Section 3.2).

(2) Transforming a Tensor into a Low-Rank Structure: A crit-

ical objective in PuzzleTensor is to transform the input tensor

into a structure that facilitates low-rank factorization. However,

directly computing the rank of a tensor is an NP-hard problem,

making this task computationally infeasible. To overcome this,

we propose a novel objective function based on a matricized

representation of the tensor. This objective function, designed

to capture essential low-rank characteristics, is theoretically

shown to minimize rank when optimized. Our approach pro-

vides a principled and computationally efficient pathway for

learning transformations that induce low-rank structures in

tensors (Section 3.3).

(3) Scalability for Large-Scale Tensors: For extremely large in-

put tensors, directly learning shifts becomes computationally

prohibitive due to memory and runtime constraints. To tackle

this scalability issue, we present a sub-block decomposition

method. In this framework, the input tensor is partitioned into

smaller sub-blocks, and the shift operation is independently

applied to each block. Sub-block decomposition naturally lends

itself to parallel processing, where each block is independently

shifted and processed, significantly reducing runtime in large-

scale tensor scenarios (Section 3.4).

3.1 PuzzleTensor: Shifting Hyperslices
As illustrated in Figure 2, PuzzleTensor operates on a𝐷-mode tensor

X ∈ R𝐼1×𝐼2×···×𝐼𝐷 , shifting each (𝐷 − 1)-dimensional hyperslice

along all 𝐷 −1 directions. Note that each hyperslice is allowed to be

shifted by different amounts, and wraps any out-of-range indices

back to the start (circular boundary).

Let us define X𝑖𝑘 ∈ R𝐼1×···×𝐼𝑘−1×𝐼𝑘+1 · · ·×𝐼𝐷 as the (𝐷 − 1)-mode

hyperslice obtained by fixing the index 𝑖𝑘 for mode 𝑘 . Formally,

X𝑖𝑘 = X[. . . , 𝑖𝑘 , . . .], 𝑖𝑘 ∈ {1, 2, · · · , 𝐼𝑘 }.
PuzzleTensor then shifts X𝑖𝑘 in each of the remaining 𝐷 − 1 modes

(i.e., for every 𝑗 ≠ 𝑘). Denote by

ℎ𝑘,𝑗 (𝑖𝑘) ∈ Z
the integer shift amount along mode 𝑗 for the slice indexed by 𝑖𝑘 .

Since we use circular shifts, indices that exceed the boundary of

dimension 𝑗 wrap around. Using 1-based indexing, define the wrap

function

wrap𝑗 (𝑎) = 1 +
(
(𝑎 − 1) mod 𝐼 𝑗

)
,

which ensures the result stays in the range {1, 2, · · · , 𝐼 𝑗 }.
After applying these shifts for mode 𝑘 , we obtain a new tensor

Shift𝑘 (X) ∈ R𝐼1×𝐼2×···×𝐼𝐷 , where each element is taken from a

circularly shifted location in X. Concretely,

Shift𝑘 (X)
(
𝑖1, · · · , 𝑖𝐷

)
= X

(
wrap

1

(
𝑖1 − 𝛿𝑘,1 (𝑖𝑘)

)
, · · · ,wrap𝐷

(
𝑖𝐷 − 𝛿𝑘,𝐷 (𝑖𝑘)

))
,

where

𝛿𝑘,𝑗 (𝑖𝑘) =
{
ℎ𝑘,𝑗 (𝑖𝑘), if 𝑗 ≠ 𝑘,

0, if 𝑗 = 𝑘.

In other words, for the hyperslice X𝑖𝑘 indexed by 𝑖𝑘 , mode 𝑗 ≠ 𝑘 is

shifted by ℎ𝑘,𝑗 (𝑖𝑘), and we do not mix the elements between slices.

To fully rearrange the tensor across all modes, we define the

Shift function by sequentially applying these mode-wise shifts in

any chosen order, typically 𝑘 = 1, · · · , 𝐷 . Specifically,

Shift(X) = Shift𝐷 ◦ Shift𝐷−1 ◦ · · · ◦ Shift1 (X).

Moreover, depending on the complexity of the problem, the Shift

function may be applied not just once but instead iterated 𝐿 times.

Such repeated applications allow for progressively refining the

tensor’s structure to better align with low-rank properties or other

optimization objectives. Formally, the iterative shift is expressed as

X (𝑡+1) = Shift(X (𝑡)), 𝑡 = 0, · · · , 𝐿 − 1,

where X (0)
is the input tensor, and the tensor X (𝐿)

is obtained

after 𝐿 iterations. This iterative approach balances flexibility and

computational efficiency, enabling our proposed method to adap-

tively refine the tensor’s structure as needed. We define the tensor

X (𝐿)
as the final output of PuzzleTensor and denote it byZ:

Z ≔ X (𝐿) = PuzzleTensor(X).

3.2 Fourier-Based Shift Operation
The process of shifting hyperslices of a tensor is inherently discrete,

creating a substantial challenge for gradient-based optimization

techniques. Indeed, an integer-valued shift parameter obstructs gra-

dient flow, making it difficult to learn the optimal shift via standard

backpropagation. To address this limitation, we exploit the proper-

ties of the Fourier transform, which allows us to treat discrete shifts

as continuous transformations in the frequency domain. By this

technique, we relax the integer shift parameter into a real-valued

one, thereby rendering the operation differentiable and compatible

with existing optimization techniques (see Figure 3).

3.2.1 Overview of the Frequency-Domain Shift. Consider a one-

dimensional signal 𝒙 of length 𝑁 and let 𝑥 (𝑚) ≔ F {𝒙}(𝑚) denote
its discrete Fourier transform (DFT). When 𝒙 is shifted by an integer

amount ℎ, namely 𝑦 (𝑛) = 𝑥 (𝑛 − ℎ mod 𝑁), its frequency-domain

counterpart is multiplied by a complex exponential:

F {𝒚}(𝑚) = 𝑒−2𝜋𝑖𝑚ℎ/𝑁 𝑥 (𝑚) . (1)

This property generalizes naturally to real-valued shifts ℎ ∈ R.
Even if the original shift is inherently discrete, expressing it as

a continuous parameter ℎ allows for gradient-based methods to

optimize it. Thus, instead of directly shifting 𝒙 by integer steps in the

spatial domain, we work with its frequency-domain representation

�̂� , which allows us to optimize the shift parameters continuously.

However, for the transformed signal to remain real-valued after

an inverse Fourier transform, conjugate symmetry in the frequency

PuzzleTensor: A Method-Agnostic Data Transformation for Compact Tensor Factorization KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

1Yong-chan Park (SNU)

∗

Input tensor Fourier transform Phase tensor Inverse DFT

Figure 3: Fourier-based shift operation. The input tensor is
processed by DFT of its mode-𝑘 hyperslices, element-wise
multiplication with the phase tensor, and an inverse DFT.

domain must be preserved [30]. A vector 𝒗 = (𝑣0, . . . , 𝑣𝑁−1) is con-
jugate symmetric if and only if 𝑣𝑁−𝑚 = 𝑣𝑚 for all𝑚 = 1, . . . , 𝑁 − 1.

For a non-integer ℎ ∈ R \ Z, directly multiplying by the term

𝑒−2𝜋𝑖𝑚ℎ/𝑁
as in Equation (1) generally breaks the conjugate sym-

metry since 𝑒−2𝜋𝑖 (𝑁−𝑚)ℎ/𝑁 ≠ 𝑒−2𝜋𝑖𝑚ℎ/𝑁
. We address this by de-

signing a vector 𝝓𝑁,ℎ ∈ C𝑁 satisfying the following requirements:

(1) Conjugate symmetry: 𝜙𝑁,ℎ (𝑁 −𝑚) = 𝜙𝑁,ℎ (𝑚) (1 ≤ 𝑚 < 𝑁).
(2) Generalizability: If ℎ ∈ Z, then 𝜙𝑁,ℎ (𝑚) = 𝑒−2𝜋𝑖𝑚ℎ/𝑁 ∀𝑚.

To this end, let 𝜔 = 𝑒−2𝜋𝑖ℎ/𝑁 , and define 𝝓𝑁,ℎ ∈ C𝑁 as follows:

𝝓𝑁,ℎ =


(𝜔0, 𝜔1, . . . , 𝜔

𝑁−1
2 , 𝜔−𝑁−1

2 , . . . , 𝜔−1), 𝑁 : odd,

(𝜔0, 𝜔1, . . . , 𝜔
𝑁−2
2 ,ℜ(𝜔

𝑁
2), 𝜔−𝑁−2

2 , . . . , 𝜔−1), 𝑁 : even,

where ℜ(𝑧) denotes the real part of a complex number 𝑧. First, it is

easy to see that 𝝓𝑁,ℎ is conjugate symmetric since𝜔 = 𝜔−1
. Second,

when ℎ is an integer, 𝜔
𝑁
2 itself is a real number, so ℜ(𝜔

𝑁
2) = 𝜔

𝑁
2 .

Moreover, 𝜔𝑁 = 𝑒−2𝜋𝑖ℎ = 1, and thus 𝜔−𝑚 = 𝜔𝑁−𝑚
for 1 ≤ 𝑚 <

𝑁 /2, which leads to 𝜙𝑁,ℎ (𝑚) = 𝜔𝑚 = 𝑒−2𝜋𝑖𝑚ℎ/𝑁
for all𝑚.

The frequency-domain shifted signal is then expressed as

�̂�
shifted

= 𝝓𝑁,ℎ ∗ �̂�,
where ∗ denotes the element-wise product. This modification en-

sures that when the inverse Fourier transform is applied, the result-

ing spatial-domain signal remains real-valued. Finally, the shifted

signal in the spatial domain is obtained via the inverse DFT as

𝒙
shifted

= F −1{�̂�
shifted

}.
This approach generalizes the discrete shift operation to arbitrary

ℎ ∈ R, enabling its use in gradient-based optimization frameworks.

3.2.2 Extension to Hyperslices. We extend the frequency-domain

shift operation described for one-dimensional signals to (𝐷 − 1)-
dimensional hyperslices in a tensor. This generalization is achieved

by applying a (𝐷 − 1)-dimensional DFT to the hyperslice, perform-

ing frequency-domain shifts along each axis, and then applying an

inverse (𝐷 − 1)-dimensional DFT to obtain the shifted hyperslice

in the spatial domain.

Let X𝑖𝑘 ∈ R𝐼1×···×𝐼𝑘−1×𝐼𝑘+1 · · ·×𝐼𝐷 be the (𝐷 − 1)-dimensional hy-

perslice obtained by fixing the index 𝑖𝑘 along mode 𝑘 . We first

compute the (𝐷 − 1)-dimensional DFT of X𝑖𝑘 , denoted by
ˆX𝑖𝑘 =

F𝐷−1{X𝑖𝑘 } ∈ C𝐼1×···×𝐼𝑘−1×𝐼𝑘+1 · · ·×𝐼𝐷 . The frequency-domain shifted

hyperslice is computed by multiplying
ˆX𝑖𝑘 with the exponential

factor corresponding to the shift ℎ𝑘,𝑗 (𝑖𝑘) along each axis:

ˆX
shifted,𝑖𝑘 =

⊗
outer

𝑗≠𝑘
𝝓𝐼 𝑗 ,ℎ𝑘,𝑗 (𝑖𝑘) ∗ ˆX𝑖𝑘 ,

where ℎ𝑘,𝑗 (𝑖𝑘) ∈ R is the real-valued shift amount along axis 𝑗 ,

and

⊗
outer

𝑗≠𝑘 𝝓𝐼 𝑗 ,ℎ𝑘,𝑗 (𝑖𝑘) ∈ C𝐼1×···×𝐼𝑘−1×𝐼𝑘+1 · · ·×𝐼𝐷 denotes the outer

product of the exponential factors. Finally, the shifted hyperslice

in the spatial domain is obtained by applying the inverse (𝐷 − 1)-
dimensional DFT to

ˆX
shifted,𝑖𝑘 :

X
shifted,𝑖𝑘 = F −1

𝐷−1{ ˆXshifted,𝑖𝑘 }.
After performing the above operations for all hyperslices X𝑖𝑘 (i.e.,

for each 𝑖𝑘 ∈ {1, . . . , 𝐼𝑘 }), the final mode-𝑘 shifted tensor Shift𝑘 (X)
is constructed by concatenating the hyperslices along mode 𝑘 :

Shift𝑘 (X) =
⊕𝐼𝑘

𝑖𝑘=1
X
shifted,𝑖𝑘

where

⊕
denotes tensor concatenation along mode 𝑘 . By applying

these shifts iteratively to each hyperslice along all modes, PuzzleTen-

sor effectively reorganizes tensor data for low-rank representations.

3.3 Optimization for Low-Rank Structures
A core objective of PuzzleTensor is to reshape the input tensor into

a form that naturally admits a low-rank approximation. However,

determining the exact rank of an 𝑛-mode tensor is known to be NP-

hard for 𝑛 larger than two [9], rendering direct rank-minimization

approaches computationally intractable. To tackle this, we propose

a novel objective function grounded in a matricized representation

of the tensor, designed to capture essential low-rank properties

through a theoretically justified criterion. In particular, Theorem 1

shows that minimizing the nuclear norm of each matricized view of

Z = PuzzleTensor(X) induces sparsity in the core tensor of the cor-
responding higher-order singular value decomposition (HOSVD).

This sparsity in turn facilitates approximating the original tensor

X at a reduced target rank without sacrificing accuracy. Formally,

we aggregate these norms across all modes as the following loss:

L =
∑︁

1≤𝑘≤𝐷

1√︁
𝐼𝑘

∥𝑍 (𝑘) ∥∗, (2)

where 𝐼𝑘 is the size of the 𝑘-mode, 𝑍 (𝑘) ∈ R𝐼𝑘×
∏

𝑗≠𝑘 𝐼 𝑗
represents

the 𝑘-mode matricization of the transformed tensorZ, and ∥ · ∥∗
denotes the nuclear norm. This formulation provides a principled

and computationally efficient mechanism for inducing low-rank

structures, as discussed in the following theorem.

Theorem 1. Let S ∈ R𝐼1×···×𝐼𝐷 be the core tensor of the HOSVD
of Z ∈ R𝐼1×···×𝐼𝐷 and 1 ≤ 𝑘 ≤ 𝐷 . Then, for sufficiently large
𝐼1 · · · 𝐼𝑘−1𝐼𝑘+1 · · · 𝐼𝐷 , we have the asymptotic equality

E

[
∥𝑣𝑒𝑐 (S)∥1

]
∼ ∥𝑍 (𝑘) ∥∗

√︂
2

𝜋
𝐼1 · · · 𝐼𝑘−1𝐼𝑘+1 · · · 𝐼𝐷 , (3)

where 𝑣𝑒𝑐 (·) denotes the vectorization of a tensor, 𝑍 (𝑘) is the 𝑘-mode
matricization ofZ, and ∥ · ∥∗ is the nuclear norm. □

Proof. Let 𝑈𝑑 ∈ R𝐼𝑑×𝐼𝑑 be the left singular matrix in the SVD

of 𝑍 (𝑑) for each 1 ≤ 𝑑 ≤ 𝐷 . Then, the core tensor S is defined as

S = Z ×1 𝑈
⊤
1
×2 𝑈

⊤
2
×3 · · · ×𝐷 𝑈⊤

𝐷 ,

where ×𝑑 denotes the 𝑑-mode product. This may be written in

matricized form as follows:

𝑆 (𝑘) = 𝑈⊤
𝑘
𝑍 (𝑘)

(
𝑈⊤
𝐷 ⊗ · · · ⊗ 𝑈⊤

𝑘+1 ⊗ 𝑈⊤
𝑘−1 ⊗ · · · ⊗ 𝑈⊤

1

)⊤
= 𝑈⊤

𝑘
𝑍 (𝑘)

(
𝑈𝐷 ⊗ · · · ⊗ 𝑈𝑘+1 ⊗ 𝑈𝑘−1 ⊗ · · · ⊗ 𝑈1

)
,

(4)

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Yong-chan Park, Kisoo Kim, and U Kang

where 𝑆 (𝑘) is the mode-𝑘 matricization ofS, and ⊗ is the Kronecker

product. Let the SVD of 𝑍 (𝑘) be𝑈𝑘Σ𝑘𝑉
⊤
𝑘
. Then, (4) becomes

𝑆 (𝑘) = Σ𝑘𝑉
⊤
𝑘

(
𝑈𝐷 ⊗ · · · ⊗ 𝑈𝑘+1 ⊗ 𝑈𝑘−1 ⊗ · · · ⊗ 𝑈1

)
since𝑈𝑘 is a unitary matrix. Denote 𝐼≠𝑘 := 𝐼1 · · · 𝐼𝑘−1𝐼𝑘+1 · · · 𝐼𝐷 and

𝑈≠𝑘 ≔ 𝑈𝐷 ⊗ · · · ⊗ 𝑈𝑘+1 ⊗ 𝑈𝑘−1 ⊗ · · · ⊗ 𝑈1. We have

E

[
∥𝑣𝑒𝑐 (S)∥1

]
= E

[
∥𝑣𝑒𝑐 (𝑆 (𝑘))∥1

]
= E

[
∥𝑣𝑒𝑐 (Σ𝑘𝑉⊤

𝑘
𝑈≠𝑘)∥1

]
=

∑︁𝐼𝑘

𝑖=1
𝜎𝑘,𝑖E

[
∥(𝑉⊤

𝑘
𝑈≠𝑘) [𝑖, :] ∥1

]
,

where 𝜎𝑘,𝑖 is the 𝑖-th singular value of 𝑍 (𝑘) , and𝑀 [𝑖, :] represents
the 𝑖-th row of a matrix𝑀 .

We show that for all 𝑖 , E[∥(𝑉⊤
𝑘
𝑈≠𝑘) [𝑖, :] ∥1] →

√︁
2𝐼≠𝑘/𝜋 as 𝐼≠𝑘

approaches infinity, from which the proof follows. Let us denote the

𝑖-th column vector of𝑉𝑘 as𝑋 (𝑖) ∈ R𝐼≠𝑘 , and the 𝑗-th column vector

of 𝑈≠𝑘 as 𝑌 (𝑗) ∈ R𝐼≠𝑘 . We may assume that for sufficiently large

𝐼≠𝑘 , {𝑋 (𝑖)1, · · · , 𝑋 (𝑖)𝐼≠𝑘 } are independent and normally distributed

random variables: 𝑋 (𝑖)𝑛 ∼ N(0, 𝜎2) for 𝑛 = 1, · · · , 𝐼≠𝑘 , and 𝜎2 is

a variance. Because 𝑋 (𝑖) is a unit vector, the expected value of∑𝐼≠𝑘
𝑛=1

𝑋 (𝑖)2𝑛 ∼ 𝜎2𝜒2 (𝐼≠𝑘) must be equal to 1, where 𝜒2 (𝐼≠𝑘) is the
chi-squared distribution with 𝐼≠𝑘 degrees of freedom. It follows

from E[𝜎2𝜒2 (𝐼≠𝑘)] = 𝜎2𝐼≠𝑘 = 1 that 𝜎2 = 1/𝐼≠𝑘 , which yields

𝑋 (𝑖)𝑛 ∼ N(0, 1/𝐼≠𝑘), 𝑛 = 1, · · · , 𝐼≠𝑘 .
A similar argument for 𝑌 (𝑗) leads to the following:

𝑌 (𝑗)𝑛 ∼ N(0, 1/𝐼≠𝑘), 𝑛 = 1, · · · , 𝐼≠𝑘 .
Assuming 𝑋 (𝑖)𝑛 and 𝑌 (𝑗)𝑛 are independent, we have

E[𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛] = E[𝑋 (𝑖)𝑛] · E[𝑌 (𝑗)𝑛] = 0,

Var[𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛] = Var[𝑋 (𝑖)𝑛] · Var[𝑌 (𝑗)𝑛]
+ E[𝑋 (𝑖)𝑛]2 · Var[𝑌 (𝑗)𝑛]
+ E[𝑌 (𝑗)𝑛]2 · Var[𝑋 (𝑖)𝑛] = 1/𝐼2

≠𝑘

for all 𝑛 = 1, · · · , 𝐼≠𝑘 . Now, for sufficiently large 𝐼≠𝑘 , the distribu-

tion of 𝐼
−1/2
≠𝑘

∑𝐼≠𝑘
𝑛=1

𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛 is approximatelyN(0, 1/𝐼2
≠𝑘

) by the

central limit theorem, and thus,

∑𝐼≠𝑘
𝑛=1

𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛 ∼ N(0, 1/𝐼≠𝑘).
Then, it can be readily seen that its absolute deviation is given by

E

[���∑︁
𝑛
𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛

���] = √︁
2/(𝜋𝐼≠𝑘).

This implies that

E[∥(𝑉⊤
𝑘
𝑈≠𝑘) [𝑖, :] ∥1] = E

[∑︁𝐼≠𝑘

𝑗=1

���∑︁
𝑛

𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛
���]

=
∑︁𝐼≠𝑘

𝑗=1
E

[���∑︁
𝑛

𝑋 (𝑖)𝑛𝑌 (𝑗)𝑛
���] = √︁

2𝐼≠𝑘/𝜋 ,

hence the proof. □

Note that it follows from (3) that

E

[
∥𝑣𝑒𝑐 (S)∥1

]
∝ 1√︁

𝐼𝑘

∥𝑍 (𝑘) ∥∗

for each 1 ≤ 𝑘 ≤ 𝐷 since 𝐼1 · · · 𝐼𝐷 is constant. We aggregate these

terms for all 𝑘 to account for the influence across all axes, which

leads to our proposed objective function (Equation (2)).

The loss L is then minimized through a gradient-based optimiza-

tion procedure, allowing PuzzleTensor to learn the shift parameters

end-to-end. By incorporating this optimization into standard back-

propagation frameworks, PuzzleTensor iteratively adjusts the shift

parameters to reorganize the tensor, effectively reducing the rank

while maintaining accurate reconstruction of the original data.

3.4 Sub-Block Shifting
For extremely large tensors, applying the shift operation across the

entire dataset becomes impractical due to high memory demands

and significant runtime overhead. To address this issue, we partition

the input tensor into smaller, moremanageable sub-blocks, allowing

shifts to be applied independently within each block. This strategy

not only reduces computational complexity but also enables parallel

processing, as each sub-block is processed independently.

Let X ∈ R𝐼1×𝐼2×···×𝐼𝐷 be the original 𝐷-mode input tensor. We

divide each dimension 𝑘 ∈ {1, . . . , 𝐷} into 𝐵𝑘 blocks. Define a set

of partition boundaries:

0 = 𝑝𝑘,0 < 𝑝𝑘,1 < · · · < 𝑝𝑘,𝐵𝑘−1 < 𝑝𝑘,𝐵𝑘
= 𝐼𝑘 ,

where 𝐵𝑘 needs not evenly divide 𝐼𝑘 . In cases where 𝐼𝑘 is not a

multiple of 𝐵𝑘 , the last sub-block will have a smaller (or larger)

residual size. Consequently, each mode 𝑘 is split into 𝐵𝑘 segments:

Segment 𝑏𝑘 for mode 𝑘 : 𝑝𝑘,𝑏𝑘−1 + 1 ≤ 𝑛𝑘 ≤ 𝑝𝑘,𝑏𝑘 ,

where 𝑏𝑘 ∈ {1, . . . , 𝐵𝑘 }, and 𝑛𝑘 indexes the coordinate in mode 𝑘 .

A sub-block of X is then indexed by 𝒃 = (𝑏1, 𝑏2, . . . , 𝑏𝐷), and we

denote the 𝒃-th sub-block of X as follows:

X (𝒃) = {X(𝑛1, . . . , 𝑛𝐷) : 𝑝𝑘,𝑏𝑘−1 + 1 ≤ 𝑛𝑘 ≤ 𝑝𝑘,𝑏𝑘 , 𝑘 = 1, . . . , 𝐷}.

Hence, X is fully partitioned into the collection {X (𝒃)
: 1 ≤ 𝑏𝑘 ≤

𝐵𝑘 , 1 ≤ 𝑘 ≤ 𝐷}. Typically, the partition boundaries {𝑝𝑘,𝑏𝑘 } are
chosen such that the sub-blocks are of approximately equal size.

Formally, we set 𝑝𝑘,𝑏𝑘 = 𝑏𝑘 · ⌊𝐼𝑘/𝐵𝑘 ⌋ for 𝑏𝑘 ∈ {1, . . . , 𝐵𝑘 − 1}.
Within each sub-block X (𝒃)

, we apply the shift operation pre-

sented in Section 3.2. Specifically, for each mode 𝑘 , we learn a

mode-𝑘 shift function Shift𝑘 (·) that shifts the (𝐷 − 1)-dimensional

hyperslices in X (𝒃)
. Crucially, the shift amounts for one sub-block

are not shared with other sub-blocks, allowing each block’s shifts

to be learned independently. Thus, the shifts can be computed in

parallel, drastically reducing the overall runtime for large-scale

datasets. Once the shifts have been applied to each sub-block, the

transformed blocks are concatenated back into a single tensor:

Shift(X) =
[
Shift𝐷 ◦ Shift𝐷−1 ◦ · · · ◦ Shift1

(
X (𝒃))]

𝒃
.

In practice, the partition boundaries {𝑝𝑘,𝑏𝑘 } and the block indices

{𝐵𝑘 } are selected to balance computational load and memory usage,

accommodating a wide range of tensor sizes and shapes.

Remark. By partitioning the tensor into sub-blocks and shifting

each block independently, our method substantially alleviates the

computational challenges posed by very large tensors. Although

the sub-blocks do not share shift parameters, we find that localized

transformations often suffice to reduce rank and preserve key struc-

ture, making this strategy both scalable and effective for large-scale

tensor factorization.

PuzzleTensor: A Method-Agnostic Data Transformation for Compact Tensor Factorization KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

3.5 Data Compression with PuzzleTensor
Applying PuzzleTensor to an input tensorX ∈ R𝐼1×𝐼2×···×𝐼𝐷 reveals

a structure that can be more effectively approximated by standard

decomposition techniques, such as CP, Tucker, or Tensor-Train.

By shifting hyperslices to reduce the tensor’s effective rank, Puz-

zleTensor enables each decomposition algorithm to operate with

lower target ranks, thereby creating factor representations that

significantly reduce storage requirements.

Once X has been shifted and factorized, we compress the data

by storing only the resulting factors (e.g., factor matrices and core

tensors) along with the learned shift parameters. In practice, any of

the well-established decompositions may be used, chosen according

to the desired compression ratio or domain-specific considerations.

To reconstruct X, we first regenerate the tensor from the stored

factors. Specifically, we apply the inverse decomposition to obtain

the shifted tensorZ. We then recover the original tensor by revers-

ing the PuzzleTensor shifts. Using the stored shift parameters, we

invert the shifts by applying them in the opposite direction and

sequence. This strictly reverses the transformation, ensuring that

no information is lost in the backward shifting process.

In this context, PuzzleTensor requires storing the learned shift

parameters. Assume, for simplicity, that each dimension 𝐼𝑘 is evenly

divided into 𝐵𝑘 blocks and that the shift procedure is iterated 𝐿

times, then the following theorem holds:

Theorem 2. The number of shift parameters in PuzzleTensor is

𝐿(𝐷 − 1) ·
∑︁𝐷

𝑘=1
𝐼𝑘/𝐵𝑘 ·

∏𝐷

𝑘=1
𝐵𝑘 ,

provided that 𝐼𝑘 is evenly divided into 𝐵𝑘 blocks. □

Proof. See Appendix A.1. □

When the block sizes 𝐵𝑘 are fixed, the parameter count grows

linearly with the tensor sizes 𝐼𝑘 , making the method highly scal-

able for large tensors. Increasing the number of blocks enhances

parallelization and reduces computation time. Although the larger

parameter set introduces overhead and might cause a decline in

reconstruction accuracy, our experimental evaluation confirms that

the reduction in accuracy is minor (see Section 4.4).

Finally, we provide the time complexity of PuzzleTensor. As

stated in Theorem 3, PuzzleTensor exhibits a quasi-linear time

complexity with respect to the number of entries in the input tensor,

implying that it remains efficient even for large-scale tensors.

Theorem 3. The time complexity of PuzzleTensor is given by

O
(
𝐿(𝐷 − 1) ·

∏𝐷

𝑘=1
𝐼𝑘 · log

(∏𝐷

𝑘=1
𝐼𝑘/𝐵𝑘

))
. □

Proof. See Appendix A.2. □

4 Experiments
Through experiments, we answer the following questions:

Q1 Performance (Section 4.2). How accurately does PuzzleTen-

sor reconstruct tensor data compared to baselines?

Q2 Scalability (Section 4.3). How does PuzzleTensor scale with

increasing input size?

Q3 Ablation study (Section 4.4).How do different design choices

(number of shift layers and block size) affect performance?

Table 1: Dataset summarization.
Dataset Type Size Density

{D𝑛}𝑛=4,· · · ,81 Synthetic 2
𝑛 × 2

𝑛 × 2
𝑛

1.000

{S𝑛}𝑛=4,· · · ,81 Synthetic 2
𝑛 × 2

𝑛 × 2
𝑛

0.010

Uber
2

Real-world 183 × 24 × 1140 0.138

Action
3

Real-world 100 × 570 × 567 0.393

PEMS-SF
4

Real-world 963 × 144 × 440 0.999

Activity
5

Real-world 337 × 570 × 320 0.569

Stock
6

Real-world 1317 × 88 × 916 0.816

NYC
7

Real-world 265 × 265 × 28 × 35 0.118

4.1 Experimental Setup
Machine. Our system utilizes an Intel Core i7-10700KF @ 3.80GHz

processor paired with 32GB of RAM and a single GPU machine

with RTX 3070 Ti.

Datasets. We evaluate PuzzleTensor on both synthetic and real-

world data, as summarized in Table 1. The synthetic datasets
1 {D𝑛}

and {S𝑛} are 3-mode tensors of size 2
𝑛 × 2

𝑛 × 2
𝑛
. D𝑛 has a density

of 1.00, generated from a standard normal distribution, whereas S𝑛

is a sparse binary tensor with a density of 0.01, where nonzero en-

tries are randomly assigned. Following [24], we use six real-world

datasets. The Uber [36] dataset records the number of Uber pick-

ups in New York City, represented by (date, hour, latitude; count).

Action and Activity [17, 42] contain features derived from motion

videos, each represented as (frame, feature, video; value). PEMS-

SF [7] consists of car-lane usage rates in the San Francisco Bay Area,

expressed as (station, timestamp, day; measurement). Stock [12]

captures various stocks in the format (time, feature, stock; value).

Finally, NYC encompasses trip records from yellow and green taxis

in New York City between 2020 and 2022, structured as (pick up

zone, drop off zone, day, month; count). We also add Gaussian

noise to the real-world datasets to further evaluate the robustness

of each tensor decomposition method. All data are represented in

double-precision floating-point format.

Baselines.We compare against three widely used tensor decom-

position methods—CP, Tucker, and TT—as well as each of these

methods enhanced by our PuzzleTensor (i.e., CP+PuzzleTensor,

Tucker+PuzzleTensor, TT+PuzzleTensor).

• CP, Tucker, and TT. These standard techniques are often the

first choice for high-dimensional data factorization. However, in

many cases they struggle when local structures are misaligned

or when the data do not fit strict low-rank assumptions.

• PuzzleTensor-augmented CP, Tucker, and TT. We apply

PuzzleTensor as a preprocessing step (i.e., shifting hyperslices)

prior to the decomposition methods. After obtaining the trans-

formed tensorZ, we run the corresponding factorization with

lower target ranks to ensure a fair comparison. For fairness, both

the baseline and baseline+PuzzleTensor approaches operate on

each subblock independently.

1
https://github.com/snudatalab/PuzzleTensor/

2
http://frostt.io/tensors/

3
https://github.com/titu1994/MLSTM-FCN

4
https://www.timeseriesclassification.com/

5
https://github.com/titu1994/MLSTM-FCN

6
https://github.com/jungijang/KoreaStockData

7
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://github.com/snudatalab/PuzzleTensor/
http://frostt.io/tensors/
https://github.com/titu1994/MLSTM-FCN
https://www.timeseriesclassification.com/
https://github.com/titu1994/MLSTM-FCN
https://github.com/jungijang/KoreaStockData
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Yong-chan Park, Kisoo Kim, and U Kang

Table 2: Reconstruction errors at varying compression sizes across different datasets, where the lower errors are highlighted.
Each decomposition method benefits from PuzzleTensor, demonstrating its effectiveness and broad applicability.

Dataset D8 S8 Uber Action

Compressed Size (MB) 10 25 50 10 25 50 3.0 7.5 15 20 45 90

CP 0.9428 0.8677 0.7139 0.9095 0.7857 0.6211 0.7314 0.6294 0.5363 0.7010 0.6358 0.5300

CP+PuzzleTensor 0.9385 0.8233 0.6757 0.8928 0.7145 0.5064 0.7206 0.6219 0.5151 0.7015 0.6298 0.5185

Tucker 0.9333 0.8490 0.7334 0.8970 0.7905 0.6592 0.7456 0.6437 0.5535 0.6741 0.6227 0.5469

Tucker+PuzzleTensor 0.9228 0.8073 0.6809 0.8674 0.6546 0.4832 0.6903 0.6019 0.5159 0.6617 0.6046 0.5230

TT 0.9401 0.8664 0.7360 0.9133 0.8216 0.6754 0.7786 0.6599 0.5430 0.6851 0.6261 0.5236

TT+PuzzleTensor 0.9284 0.8274 0.6681 0.8692 0.7342 0.5137 0.7167 0.6050 0.5017 0.6722 0.6065 0.4981

Dataset PEMS-SF Activity Stock NYC

Compressed Size (MB) 45 100 200 58 115 230 100 200 400 65 130 260

CP 0.6785 0.6200 0.5002 0.6688 0.6068 0.4698 0.6516 0.5880 0.4633 0.6604 0.6137 0.4954

CP+PuzzleTensor 0.6799 0.6148 0.4897 0.6660 0.6006 0.4583 0.6521 0.5730 0.4446 0.6597 0.5952 0.4686

Tucker 0.6672 0.6163 0.5193 0.6482 0.5846 0.4888 0.6343 0.5728 0.4798 0.6486 0.6111 0.4786

Tucker+PuzzleTensor 0.6523 0.5967 0.4936 0.6315 0.5625 0.4636 0.6120 0.5416 0.4423 0.6318 0.5890 0.4479

TT 0.6702 0.6188 0.5149 0.6587 0.5937 0.4841 0.6449 0.5830 0.4768 0.6402 0.5926 0.5460

TT+PuzzleTensor 0.6543 0.5980 0.4881 0.6415 0.5711 0.4582 0.6229 0.5520 0.4389 0.6305 0.5832 0.5346

Hyperparameters. The configuration of the hyperparameters in

PuzzleTensor is described in Appendix C.

Measure. We focus on reconstruction error of the tensor decompo-

sition methods. Given a tensor X, denote its reconstruction from

factors as
ˆX. The reconstruction error is defined by ∥X− ˆX∥𝐹 /∥X∥𝐹 ,

where ∥ · ∥𝐹 denotes the Frobenius norm.

4.2 Performance (Q1)
We begin by assessing the reconstruction performance of PuzzleTen-

sor under different compression sizes. For each dataset, we specify

several target compressed sizes (inMB) andmeasure the correspond-

ing reconstruction error using various decomposition methods. We

calculate the compressed size by combining both the PuzzleTensor

parameter count and that of the decomposition itself. Note that

increasing the compressed size typically allows for higher ranks in

the decomposition, thus improving accuracy.

Table 2 presents the results for eight representative datasets,

each evaluated at three different compressed sizes. Incorporating

PuzzleTensor reduces the reconstruction error in most scenarios,

suggesting that shifting hyperslices allows the factorization to cap-

ture more compact and precise representations. Furthermore, we

observe consistent gains across different tensor decomposition fam-

ilies. This broad applicability indicates the versatility of PuzzleTen-

sor in enhancing various factorization pipelines. Additional results

for even larger compression sizes are provided in Appendix B.

4.3 Scalability (Q2)
We evaluate the scalability of PuzzleTensor by measuring its run-

ning time as the input tensor size increases, using both dense data

{D𝑛} and sparse data {S𝑛}. Specifically, we consider tensors whose
spatial dimensions range from 2

4 × 2
4 × 2

4
up to 2

8 × 2
8 × 2

8
.

Figure 4 presents the running time of CP, Tucker, and TT decompo-

sitions with and without PuzzleTensor across various input tensor

sizes. Even though PuzzleTensor introduces additional shift opera-

tions, its sub-block strategy (Section 3.4) ensures that the overall

computational cost remains nearly identical to that of the original

decomposition method without PuzzleTensor. Across all tested de-

compositions (CP, Tucker, and TT) and a wide range of dense and

sparse tensors, PuzzleTensor exhibits minimal overhead, offering

nearly linear scaling with respect to the number of elements.

4.4 Ablation Study (Q3)
We conduct an ablation study to evaluate the impact of two core

components in PuzzleTensor: (1) the number 𝐿 of shift layers, and

(2) the block size 𝐵𝑘 in sub-block shifting.

Effect of the number of shift layers. Recall that PuzzleTensor
can be applied 𝐿 times in succession (Section 3.1). Table 3 reports the

reconstruction errors on the S8 dataset (compressed size = 50MB)

when increasing 𝐿 from 0 to 4, where 𝐿 = 0 indicates the naïve

baseline without PuzzleTensor. We observe that even a single layer
of PuzzleTensor yields a notable improvement over the baselines.

Additional layers further enhance alignment, but diminishing re-

turns appear after 𝐿 ≈ 3. For most practical scenarios, 𝐿 = 2 or 3

achieves a good balance of accuracy vs. computational cost.

Effect of the block size. In Section 3.4, we propose splitting each

𝑘-th mode into 𝐵𝑘 blocks to mitigate runtime complexity. Table 4

presents the impact of varying the block size in a single mode (while

keeping the others fixed) on both running time and reconstruction

error. We analyze CP+PuzzleTensor on the D8 dataset by varying

the block size as [8, 8, 𝐵], where 𝐵 ∈ {1, 2, 4, 8, 16}, ensuring a

fixed compressed size of 50MB. Although Table 4 shows the results

only for CP decomposition, Tucker and TT exhibit similar behavior.

Notably, larger block sizes facilitate parallel computation, reducing

the overall running time with a slight degradation in accuracy due

to overhead. Thus, selecting moderately sized blocks offers a good

trade-off between accuracy and computational efficiency.

PuzzleTensor: A Method-Agnostic Data Transformation for Compact Tensor Factorization KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

D4 D5 D6 D7 D8

100

102

R
un

ni
ng

 T
im

e
(s

ec
)

S4 S5 S6 S7 S8

100

102

CP CP + PuzzleTensor

(a) Running time of CP vs. CP+PuzzleTensor

D4 D5 D6 D7 D8

10 1

100

101

R
un

ni
ng

 T
im

e
(s

ec
)

S4 S5 S6 S7 S8

10 1

100

101

Tucker Tucker + PuzzleTensor

(b) Running time of Tucker vs. Tucker+PuzzleTensor

D4 D5 D6 D7 D8

10 2

100

R
un

ni
ng

 T
im

e
(s

ec
)

S4 S5 S6 S7 S8

10 2

100

TT TT + PuzzleTensor

(c) Running time of TT vs. TT+PuzzleTensor

Figure 4: Running time of CP, Tucker, and TT decomposi-
tions with and without PuzzleTensor. The results confirm
that the additional shift operations by PuzzleTensor do not
significantly impact computational cost, maintaining the ef-
ficiency of the base decomposition methods.

5 Discussion
Our experiments demonstrate that PuzzleTensor consistently low-

ers reconstruction error across diverse decomposers and compres-

sion budgets, yet several open directions warrant further study.

First, the current implementation attains the state-of-the-art accu-

racy without exploiting sparsity; incorporating sparse algebra could

reduce both memory traffic and FFT cost for highly sparse tensors,

and we regard this as an immediate avenue for optimization.

Second, joint optimization of shift parameters and low-rank

factors in an end-to-end framework could further enhance com-

pression; this is model-agnostic, albeit at the cost of additional

complexity—a trade-off we plan to explore in future work.

Third, one can shift at finer granularity than entire hyperslices—

for example, on a fiber-by-fiber basis—but this dramatically enlarges

the number of learnable parameters. With tensor order 𝐷 = 3 and

mode sizes 𝐼1 = 𝐼2 = 𝐼3 = 𝐼 , our design uses 6𝐼 shift parameters,

whereas per-fiber shifting would require 3𝐼2. Because 6𝐼 ≪ 3𝐼𝑅 is

usually satisfied for practical ranks 𝑅 but 3𝐼2 ≪ 3𝐼𝑅 is not guaran-

teed, aggressively fine shifts can offset any rank-reduction benefit

unless the decomposition rank is also decreased substantially.

Finally, we acknowledge that factor matrices are often inspected

for downstream analysis, and large shifts may complicate semantic

Table 3: Reconstruction errors at varying numbers of layers.
𝐿 = 0 denotes the standard baseline without PuzzleTensor.
Setting 𝐿 ≈ 3 is a favorable option in most scenarios.

Number of Layers (𝐿) 0 1 2 3 4

CP+PuzzleTensor 0.621 0.539 0.514 0.506 0.504

Tucker+PuzzleTensor 0.659 0.543 0.501 0.483 0.480

TT+PuzzleTensor 0.675 0.558 0.536 0.514 0.517

Table 4: Effect of block size on PuzzleTensor. Increasing the
block size enhances computational efficiency while causing
only a minor decrease in accuracy.

Block Size (𝐵) 1 2 4 8 16

Running time (sec) 1.355 1.107 0.785 0.562 0.410

Reconstruction error 0.661 0.659 0.663 0.676 0.688

interpretation when axis labels carry strict meaning. In practice,

one can freeze non-reorderable modes while shifting only time or

other flexible dimensions, or apply PuzzleTensor chiefly to domains

where axes are inherently misaligned, such as video, volumetric

medical images, LiDAR scans, and geophysical cubes.

6 Conclusions
In this paper, we propose PuzzleTensor, a method-agnostic data

transformation that leverages hyperslice shifts to achieve compact

tensor factorization without sacrificing reconstruction accuracy.

By learning shift parameters through a differentiable framework,

PuzzleTensor effectively reduces the target rank, making it broadly

applicable to existing tensor decomposition techniques such as CP,

Tucker, and TT. Moreover, our theoretical analysis shows that Puz-

zleTensor yields a low-rank structure under minimal data assump-

tions, while extensive experiments confirm consistent improve-

ments over baseline approaches in both synthetic and real-world

settings. Promising directions for follow-up include applying Puz-

zleTensor to sparse, streaming tensors and developing a unified

framework that co-optimizes the shift transformation and decom-

position parameters for even higher compression ratios.

Acknowledgments
This work was supported by the National Research Foundation

of Korea (NRF) funded by MSIT(2022R1A2C3007921), Institute of

Information & communications Technology Planning & Evaluation

(IITP) grant funded by the Korea government (MSIT), [No.RS-2020-

II200894, Flexible and Efficient Model Compression Method for

Various Applications and Environments], [No.RS-2021-II211343,

Artificial Intelligence Graduate School Program (Seoul National

University)], [No.RS-2021-II212068, Artificial Intelligence Innova-

tionHub (Artificial Intelligence Institute, Seoul National Univer-

sity)], [No.2022-0-00641, XVoice: Multi-Modal Voice Meta Learn-

ing], [No.RS-2024-00509257, Global AI Frontier Lab], and Youlchon

Foundation. The Institute of Engineering Research at Seoul Na-

tional University and the ICT at Seoul National University provided

research facilities for this work. U Kang is the corresponding author.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Yong-chan Park, Kisoo Kim, and U Kang

References
[1] Donald A Adjeroh and Supriya D Sawant. 2009. Error-resilient transmission for

3D DCT coded video. IEEE Transactions on Broadcasting 55, 2 (2009), 178–189.

[2] Anastasia Aidini, Grigorios Tsagkatakis, and Panagiotis Tsakalides. 2021. Tensor

decomposition learning for compression of multidimensional signals. IEEE
Journal of Selected Topics in Signal Processing 15, 3 (2021), 476–490.

[3] Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. 2019. TTHRESH:

Tensor compression for multidimensional visual data. IEEE transactions on
visualization and computer graphics 26, 9 (2019), 2891–2903.

[4] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky.

2009. Sparse and low-rank matrix decompositions. IFAC Proceedings Volumes 42,
10 (2009), 1493–1498.

[5] Dongjin Choi, Jun-Gi Jang, and U Kang. 2019. S3CMTF: Fast, accurate, and

scalable method for incomplete coupled matrix-tensor factorization. PLOS ONE
14, 6 (06 2019), 1–20.

[6] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-

culation of complex Fourier series. Mathematics of computation 19, 90 (1965),

297–301.

[7] Marco Cuturi. 2011. Fast global alignment kernels. In Proceedings of the 28th
international conference on machine learning (ICML-11). 929–936.

[8] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. On the best

rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-order tensors. SIAM
journal on Matrix Analysis and Applications 21, 4 (2000), 1324–1342.

[9] Johan Håstad. 1990. Tensor rank is NP-complete. Journal of algorithms 11, 4
(1990), 644–654.

[10] Cole Hawkins, Xing Liu, and Zheng Zhang. 2022. Towards compact neural

networks via end-to-end training: A Bayesian tensor approach with automatic

rank determination. SIAM Journal on Mathematics of Data Science 4, 1 (2022),
46–71.

[11] Junhui Hou, Lap-Pui Chau, Nadia Magnenat-Thalmann, and Ying He. 2014. Scal-

able and compact representation for motion capture data using tensor decompo-

sition. IEEE Signal Processing Letters 21, 3 (2014), 255–259.
[12] Jun-Gi Jang and U Kang. 2021. Fast and Memory-Efficient Tucker Decomposition

for Answering Diverse Time Range Queries. In KDD.
[13] Jun-Gi Jang, Jeongyoung Lee, Yong-chan Park, and U Kang. 2023. Fast and accu-

rate dual-way streaming parafac2 for irregular tensors-algorithm and application.

In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 879–890.

[14] Jun-Gi Jang, Yong-chan Park, and U Kang. 2024. Fast and accurate parafac2

decomposition for time range queries on irregular tensors. In CIKM. 962–972.

[15] Hyunsik Jeon, Jongjin Kim, Jaeri Lee, Jong-eun Lee, and U Kang. 2023. Ag-

gregately diversified bundle recommendation via popularity debiasing and

configuration-aware reranking. In PAKDD. Springer, 348–360.
[16] Hyunsik Jeon, Jong-eun Lee, Jeongin Yun, and U Kang. 2024. Cold-start Bundle

Recommendation via Popularity-based Coalescence and Curriculum Heating. In

Proceedings of the ACM Web Conference 2024. 3277–3286.
[17] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. 2019.

Multivariate LSTM-FCNs for time series classification. Neural networks 116 (2019),
237–245.

[18] Venera Khoromskaia and Boris N Khoromskij. 2022. Ubiquitous nature of the

reduced higher order SVD in tensor-based scientific computing. Frontiers in
Applied Mathematics and Statistics 8 (2022), 826988.

[19] Henk AL Kiers. 2000. Towards a standardized notation and terminology in

multiway analysis. Journal of Chemometrics: A Journal of the Chemometrics
Society 14, 3 (2000), 105–122.

[20] Jongjin Kim, Hyunsik Jeon, Jaeri Lee, and U Kang. 2023. Diversely regularized

matrix factorization for accurate and aggregately diversified recommendation.

In PAKDD. Springer, 361–373.
[21] Jongjin Kim and U Kang. 2025. Sequentially diversified and accurate recommen-

dations in chronological order for a series of users. In WSDM. 811–819.

[22] Junghun Kim, Ka Hyun Park, Jun-Gi Jang, and U Kang. 2024. Fast and accurate

domain adaptation for irregular tensor decomposition. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 1383–1394.

[23] Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[24] Taehyung Kwon, Jihoon Ko, Jinhong Jung, Jun-Gi Jang, and Kijung Shin. 2024.

Compact lossy compression of tensors via neural tensor-train decomposition.

Knowledge and Information Systems (2024), 1–43.
[25] Taehyung Kwon, Jihoon Ko, Jinhong Jung, and Kijung Shin. 2023. Neukron:

Constant-size lossy compression of sparse reorderable matrices and tensors. In

Proceedings of the ACM Web Conference 2023. 71–81.
[26] Jaeri Lee, Jeongin Yun, and U Kang. 2024. Towards True Multi-interest Rec-

ommendation: Enhanced Scheme for Balanced Interest Training. In 2024 IEEE
International Conference on Big Data (BigData). IEEE, 394–402.

[27] SeungJoo Lee, Yong-chan Park, and U Kang. 2024. Accurate Coupled Tensor

Factorization with Knowledge Graph. In 2024 IEEE International Conference on
Big Data (BigData). IEEE, 1009–1018.

[28] Xingyi Liu and Keshab K Parhi. 2023. Tensor Decomposition for Model Reduction

in Neural Networks: A Review [Feature]. IEEE Circuits and Systems Magazine 23,
2 (2023), 8–28.

[29] Yipeng Liu, Maarten De Vos, and Sabine Van Huffel. 2015. Compressed sensing

of multichannel EEG signals: the simultaneous cosparsity and low-rank opti-

mization. IEEE Transactions on Biomedical Engineering 62, 8 (2015), 2055–2061.

[30] Alan V Oppenheim. 1999. Discrete-time signal processing. Pearson Education

India.

[31] Ivan V Oseledets. 2011. Tensor-train decomposition. SIAM Journal on Scientific
Computing 33, 5 (2011), 2295–2317.

[32] Yong-chan Park, Jun-Gi Jang, and U Kang. 2021. Fast and accurate partial fourier

transform for time series data. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 1309–1318.

[33] Yong-chan Park, Jongjin Kim, and U Kang. 2024. Fast Multidimensional Partial

Fourier Transform with Automatic Hyperparameter Selection. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
2328–2339.

[34] James C Schatzman. 1996. Accuracy of the discrete Fourier transform and the fast

Fourier transform. SIAM Journal on Scientific Computing 17, 5 (1996), 1150–1166.
[35] Parikshit Shah, Nikhil Rao, and Gongguo Tang. 2015. Sparse and low-rank tensor

decomposition. Advances in neural information processing systems 28 (2015).
[36] Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and

George Karypis. 2017. FROSTT: The formidable repository of open sparse tensors

and tools.

[37] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George Karypis.

2015. SPLATT: Efficient and parallel sparse tensor-matrix multiplication. In 2015
IEEE International Parallel and Distributed Processing Symposium. IEEE, 61–70.

[38] Jiahao Su, Jingling Li, Xiaoyu Liu, Teresa Ranadive, Christopher Coley, Tai-Ching

Tuan, and Furong Huang. 2022. Compact neural architecture designs by tensor

representations. Frontiers in artificial intelligence 5 (2022), 728761.
[39] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. 2007. Less is more:

Compact matrix decomposition for large sparse graphs. In Proceedings of the 2007
SIAM International Conference on Data Mining. SIAM, 366–377.

[40] Nico Vervliet, Otto Debals, Laurent Sorber, and Lieven De Lathauwer. 2014.

Breaking the curse of dimensionality using decompositions of incomplete tensors:

Tensor-based scientific computing in big data analysis. IEEE Signal Processing
Magazine 31, 5 (2014), 71–79.

[41] Hongcheng Wang and Narendra Ahuja. 2004. Compact representation of multi-

dimensional data using tensor rank-one decomposition. vectors 1, 5 (2004).
[42] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. 2012. Mining actionlet

ensemble for action recognition with depth cameras. In 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 1290–1297.

[43] Zi Yang, Junnan Shan, and Zheng Zhang. 2022. Hardware-efficient mixed-

precision CP tensor decomposition. arXiv preprint arXiv:2209.04003 (2022).
[44] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and

Zenglin Xu. 2018. Learning compact recurrent neural networks with block-term

tensor decomposition. In CVPR. 9378–9387.
[45] Qibin Zhao, Masashi Sugiyama, Longhao Yuan, and Andrzej Cichocki. 2019.

Learning efficient tensor representations with ring-structured networks. In

ICASSP. IEEE, 8608–8612.
[46] Bingyin Zhou, Fan Zhang, and Lizhong Peng. 2012. Compact representation for

dynamic texture video coding using tensor method. IEEE Transactions on Circuits
and Systems for Video Technology 23, 2 (2012), 280–288.

A Proofs
A.1 Proof of Theorem 2

Proof. Because each dimension 𝐼𝑘 is evenly divided into 𝐵𝑘
subparts, each sub-block has a shape of 𝐼1/𝐵1 × · · · × 𝐼𝐷/𝐵𝐷 . Now,
considering each sub-block individually, for the 𝑘-mode, there ex-

ist a total of 𝐼𝑘/𝐵𝑘 hyperslices, each of which has (𝐷 − 1) shift
parameters (corresponding to the possible movement directions).

Extending this to all 𝑘 = 1, . . . , 𝐷 , the total number of shift parame-

ters is given by

(𝐷 − 1) ·
∑︁𝐷

𝑘=1
𝐼𝑘/𝐵𝑘 .

Since the total number of sub-blocks is

∏𝐷
𝑘=1

𝐵𝑘 and this process

is repeated 𝐿 times, the total number of parameters is given by

𝐿(𝐷 − 1) ·
∑︁𝐷

𝑘=1
𝐼𝑘/𝐵𝑘 ·

∏𝐷

𝑘=1
𝐵𝑘 ,

which completes the proof. □

PuzzleTensor: A Method-Agnostic Data Transformation for Compact Tensor Factorization KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 5: Reconstruction errors at large compression sizes (lower is better; best within each pair is highlighted).

Dataset D8 S8 Uber Action

Compressed Size (MB) 116 128 140 116 128 140 34 38 42 220 245 270

CP 0.2488 0.1912 0.1204 0.2051 0.1687 0.1019 0.2189 0.1598 0.1149 0.1935 0.1520 0.1028

CP+PuzzleTensor 0.2185 0.1774 0.1089 0.1764 0.1493 0.0822 0.2048 0.1515 0.1084 0.1825 0.1463 0.0944

Tucker 0.2929 0.2060 0.1493 0.2205 0.1793 0.1176 0.2343 0.1564 0.1040 0.2127 0.1565 0.1178

Tucker+PuzzleTensor 0.2597 0.1788 0.1267 0.1886 0.1407 0.0955 0.2171 0.1376 0.0912 0.1901 0.1426 0.0969

TT 0.2857 0.2088 0.1481 0.2093 0.1556 0.1070 0.2165 0.1497 0.0959 0.2083 0.1438 0.0956

TT+PuzzleTensor 0.2514 0.1739 0.1276 0.1646 0.1364 0.0864 0.1922 0.1329 0.0881 0.1859 0.1372 0.0843

Dataset PEMS-SF Activity Stock NYC

Compressed Size (MB) 418 465 512 425 470 515 720 800 880 470 520 570

CP 0.1761 0.1373 0.0953 0.1621 0.1353 0.0893 0.1644 0.1401 0.0958 0.1739 0.1375 0.0955

CP+PuzzleTensor 0.1697 0.1316 0.0902 0.1573 0.1267 0.0836 0.1559 0.1276 0.0871 0.1694 0.1311 0.0909

Tucker 0.1928 0.1452 0.1136 0.1777 0.1419 0.1069 0.1753 0.1456 0.1072 0.1974 0.1431 0.1179

Tucker+PuzzleTensor 0.1804 0.1328 0.0887 0.1708 0.1240 0.0851 0.1674 0.1288 0.0850 0.1866 0.1395 0.1055

TT 0.1966 0.1358 0.0924 0.1839 0.1305 0.0904 0.1883 0.1275 0.0939 0.1980 0.1346 0.0934

TT+PuzzleTensor 0.1744 0.1289 0.0802 0.1722 0.1188 0.0793 0.1668 0.1163 0.0797 0.1843 0.1276 0.0861

A.2 Proof of Theorem 3
Proof. Assuming that each dimension 𝐼𝑘 is evenly divided into

𝐵𝑘 subparts, each sub-block has a shape of 𝐼1/𝐵1 × · · · × 𝐼𝐷/𝐵𝐷 .
Each sub-block undergoes the following process: (1) A (𝐷 − 1)-
dimensional FFT is applied to eachmode-𝑘 hyperslice, (2) an element-

wise multiplication is performed with the phase tensor, and (3) an

inverse FFT is applied. Each step has a computational cost of

O
(
𝐼≠𝑘

𝐵≠𝑘
log

(
𝐼≠𝑘

𝐵≠𝑘

))
, O

(
𝐼≠𝑘

𝐵≠𝑘

)
, and O

(
𝐼≠𝑘

𝐵≠𝑘
log

(
𝐼≠𝑘

𝐵≠𝑘

))
,

respectively, where 𝐼≠𝑘 =
∏

𝑗≠𝑘 𝐼 𝑗 and 𝐵≠𝑘 =
∏

𝑗≠𝑘 𝐵 𝑗 . Applying

this to all 𝐼𝑘/𝐵𝑘 slices, the total complexity becomes

O
(
𝐼1 · · · 𝐼𝐷
𝐵1 · · ·𝐵𝐷

log

(
𝐼≠𝑘

𝐵≠𝑘

))
.

Extending this to all dimensions, we obtain

O
(
𝐷∑︁
𝑘=1

𝐼1 · · · 𝐼𝐷
𝐵1 · · ·𝐵𝐷

log

(
𝐼≠𝑘

𝐵≠𝑘

))
= O

(
𝐼1 · · · 𝐼𝐷
𝐵1 · · ·𝐵𝐷

𝐷∑︁
𝑘=1

log

(
𝐼≠𝑘

𝐵≠𝑘

))
.

Since

𝐷∑︁
𝑘=1

log

(
𝐼≠𝑘

𝐵≠𝑘

)
= log

(
𝐼𝐷−1
1

· · · 𝐼𝐷−1
𝐷

𝐵𝐷−1
1

· · ·𝐵𝐷−1
𝐷

)
= (𝐷 − 1) log

(
𝐼1 · · · 𝐼𝐷
𝐵1 · · ·𝐵𝐷

)
,

the total complexity simplifies to

O
(
(𝐷 − 1) · 𝐼1 · · · 𝐼𝐷

𝐵1 · · ·𝐵𝐷
log

(
𝐼1 · · · 𝐼𝐷
𝐵1 · · ·𝐵𝐷

))
.

Because there exist 𝐵1 · · ·𝐵𝐷 sub-blocks in total and the entire

process is repeated 𝐿 times, the final time complexity is

O
(
𝐿(𝐷 − 1) · (𝐼1 · · · 𝐼𝐷) · log

(
𝐼1 · · · 𝐼𝐷
𝐵1 · · ·𝐵𝐷

))
.

This completes the proof. □

Table 6: Hyperparameter settings for sub-block decompo-
sition. Each dataset is truncated so that its dimensions are
multiples of the chosen block sizes. 𝑙 (𝑛) is defined as 𝑙 (4) = 0

and 𝑙 (𝑛) = 𝑛 − 5 for 𝑛 = 5, · · · , 8.
Dataset Original Size Truncated Size Block Size

{D𝑛}𝑛=4,· · · ,8 (2
𝑛, 2𝑛, 2𝑛) (2

𝑛, 2𝑛, 2𝑛) [2
𝑙 (𝑛)

, 2
𝑙 (𝑛)

, 2
𝑙 (𝑛)

]

{S𝑛}𝑛=4,· · · ,8 (2
𝑛, 2𝑛, 2𝑛) (2

𝑛, 2𝑛, 2𝑛) [2
𝑙 (𝑛)

, 2
𝑙 (𝑛)

, 2
𝑙 (𝑛)

]

Uber (183, 24, 1140) (180, 24, 1140) [9, 1, 20]

Action (100, 570, 567) (100, 570, 560) [4, 19, 16]

PEMS-SF (963, 144, 440) (960, 144, 440) [32, 6, 11]

Activity (337, 570, 320) (336, 570, 320) [14, 19, 10]

Stock (1317, 88, 916) (1312, 88, 912) [41, 4, 38]

NYC (265, 265, 28, 35) (264, 264, 28, 34) [22, 22, 2, 2]

B Additional Experiments
We further evaluate PuzzleTensor at substantially larger compres-

sion budgets, as reported in Table 5. Across every dataset and de-

composition family, attaching PuzzleTensor yields the lowest recon-

struction error, often with margins exceeding 5-10% relative to its

direct baseline. These results confirm that the proposed shift-based

transformation remains effective even when aggressive compres-

sion leaves little redundancy to exploit.

C Hyperparameters
We set the number of layers in PuzzleTensor to 𝐿 = 3, and use

the Adam optimizer [23] with the learning rate 𝜂 = 0.001 for the

training. Table 6 summarizes the block sizes [𝐵1, . . . , 𝐵𝐷] used

for sub-block decomposition across eight datasets. Note that each

dataset is truncated so that each dimension is evenly divisible by

the corresponding block count; leftover sub-blocks are not shifted

for computational efficiency.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Overview of Tensor Decompositions
	2.2 Tensor Decomposition in Data Compression
	2.3 Discrete Fourier Transform

	3 Proposed Method
	3.1 PuzzleTensor: Shifting Hyperslices
	3.2 Fourier-Based Shift Operation
	3.3 Optimization for Low-Rank Structures
	3.4 Sub-Block Shifting
	3.5 Data Compression with PuzzleTensor

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance (Q1)
	4.3 Scalability (Q2)
	4.4 Ablation Study (Q3)

	5 Discussion
	6 Conclusions
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3

	B Additional Experiments
	C Hyperparameters

