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Abstract
Given a multidimensional array, how can we optimize the compu-

tation process for a part of Fourier coefficients? Discrete Fourier

transform plays an overarching role in various data mining tasks.

Recent interest has focused on efficiently calculating a small part

of Fourier coefficients, exploiting the energy compaction prop-

erty of real-world data. Current methods for partial Fourier trans-

form frequently encounter efficiency issues, yet the adoption of

pre-computation techniques within the PFT algorithm has shown

promising performance. However, PFT still faces limitations in

handling multidimensional data efficiently and requires manual

hyperparameter tuning, leading to additional costs.

In this paper, we propose Auto-MPFT (Automatic Multidimen-

sional Partial Fourier Transform), which efficiently computes a

subset of Fourier coefficients in multidimensional data without the
need for manual hyperparameter search. Auto-MPFT leverages mul-

tivariate polynomial approximation for trigonometric functions,

generalizing its domain to multidimensional Euclidean space. More-

over, we present a convex optimization-based algorithm for auto-

matically selecting the optimal hyperparameter of Auto-MPFT. We

provide a rigorous proof for the explicit reformulation of the origi-

nal optimization problem of Auto-MPFT, demonstrating the process

that converts it into a well-established unconstrained convex opti-

mization problem. Extensive experiments show that Auto-MPFT

surpasses existing partial Fourier transform methods and optimized

FFT libraries, achieving up to 7.6× increase in speed without sacri-

ficing accuracy. In addition, our optimization algorithm accurately

finds the optimal hyperparameter for Auto-MPFT, significantly

reducing the cost associated with hyperparameter search.

CCS Concepts
• Theory of computation→ Numeric approximation algo-
rithms.
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1 Introduction
Discrete Fourier transform (DFT) is a central algorithm in many

data mining tasks, including anomaly detection [15, 22, 23, 31], la-

tent pattern extraction [21, 25, 33], and image processing [8, 18, 27].

Recently, there has been a growing interest in efficiently calculating

only a part of Fourier coefficients by leveraging the energy com-

paction property of data. A majority of real-world data, such as

time series, image, and video, have a very compact representation

in the frequency domain. As an illustration, Figure 1 visualizes the

Fourier coefficients of natural images from ImageNet, where the

coefficients are mostly equal to zero except in a few low-frequency

parts. This indicates that one can gain significant computational

benefits by focusing only on the part of non-zero coefficients and

skipping the computation of unnecessary coefficients.

However, many existing methods for partial Fourier transform,

such as Goertzel algorithm [6, 13], Subband DFT [14, 26], and

Pruned FFT [2, 16, 17, 28, 30], suffer from low efficiency. Compared

to the classic fast Fourier transform (FFT) computing the full coeffi-

cients, these methods outperform FFT only when the output has a

much smaller size than the input, limiting their usage in practice. A

recent work [20] proposes PFT, which leverages pre-computation

techniques for partial Fourier transform, and raises the performance

to a level that it can replace FFT in practical applications. However,

the effectiveness of PFT is constrained by two major limitations.

First, PFT is specialized for one-dimensional data, so it does not op-

erate efficiently for multidimensional data. Although it is possible

to apply PFT to each axis of multidimensional data, we theoretically

and experimentally show that this approach is less efficient than

algorithms specifically designed for multidimensional data. Second,

PFT requires a manual hyperparameter tuning every time the size

of the input or output changes. This leads to an extra cost of the

method, especially when the data are multidimensional, because in

that case the search space of the hyperparameter is also huge.

In this paper, we propose Auto-MPFT (Automatic Multidimen-

sional Partial Fourier Transform), a fast and accurate algorithm

that computes partial Fourier coefficients of multidimensional data

without necessity for manual hyperparameter search. Auto-MPFT

approximates a set of trigonometric factors in DFT using multivari-

ate polynomials. Polynomial approximation enables Auto-MPFT to

significantly reduce the computational cost by efficiently processing
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Figure 1: Examples of input images and their Fourier maps,
where the Fourier coefficients are shown as log-amplitudes.
Except for a few low-frequency parts (around the center), the
Fourier coefficients are predominantly close to zero.

multidimensional data with matrix multiplications and multidimen-

sional FFTs. Furthermore, we propose a convex optimization-based

algorithm for automatically selecting the optimal hyperparame-

ter of Auto-MPFT. The key of our method is to approximate the

complicated constraint function in Auto-MPFT by deriving an ex-

plicit reformulation of the constraint function based on Chebyshev

approximation [7]. We prove that it leads to an unconstrained con-

vex optimization problem, which is efficiently solved by Newton’s

method. Extensive experiments show that Auto-MPFT outperforms

the state-of-the-art partial Fourier transform methods as well as op-

timized FFT libraries, Intel MKL and FFTW, achieving a remarkable

increase in speed without compromising accuracy. We also show

that our convex optimization-based algorithm successfully finds

the optimal hyperparameter of Auto-MPFT, significantly reducing

the extra cost due to the hyperparameter search.

We summarize our contributions as follows:

• Algorithm. We present Auto-MPFT, an efficient method that

computes a part of Fourier coefficients of multidimensional data.

• Automatic hyperparameter selection.We propose a convex

optimization-based algorithm for automatic selection of the opti-

mal hyperparameter of Auto-MPFT.

• Performance.We experimentally show that Auto-MPFT outper-

forms the state-of-the-art baselines without sacrificing accuracy.

We provide the source code and datasets used in our paper at

https://github.com/snudatalab/Auto-MPFT/.

2 Related Works
We present an overview of different methods for computing partial

Fourier coefficients, comparing them to our Auto-MPFT.

Fast Fourier transform. Fast Fourier transform (FFT) [5, 9, 19]

is an efficient algorithm for rapidly computing the discrete Fourier

transform (DFT), reducing the computational complexity from

𝑂 (𝑁 2) to 𝑂 (𝑁 log𝑁 ), where 𝑁 is an input size. While there are

specialized algorithms for the partial Fourier transform, it is note-

worthy that the FFT, designed for computing full coefficients, often

proves to be a superior choice. This preference is due to the fact

that FFT is a well-established and highly optimized algorithm over

the years, making it not only straightforward to implement but also

frequently outperforming specialized algorithms for partial Fourier

transform.We conduct comprehensive theoretical and experimental

comparisons between our proposed Auto-MPFT and FFT. Specifi-

cally, we show that Auto-MPFT significantly outperforms the FFT

by an order of magnitude of speedup with comparable accuracy.

Goertzel algorithm. Goertzel algorithm [6, 13] is an early

method for computing partial Fourier coefficients. It essentially

mimics the process of computing individual coefficients one by one,

entailing a computational complexity of 𝑂 (𝑀𝑁 ) for𝑀 coefficients

in an input of size 𝑁 . This indicates that Goertzel algorithm be-

comes advantageous over FFT only when the number of coefficients

𝑀 is less than log𝑁 . Although a few variants aimed at improving

the Goertzel algorithm have been proposed [4], their performance

gains are limited to a small constant factor. Consequently, these

improvements do not significantly alter the algorithm’s overall effi-

ciency. Thus, the Goertzel algorithm is less favorable in scenarios

where a considerable number of coefficients is required.

Subband DFT. Subband DFT [14, 26] breaks down the input

data into smaller sub-blocks and efficiently approximates a part

of Fourier coefficients by eliminating sub-blocks with low energy

contributions, resulting in𝑂 (𝑁 +𝑀 log𝑁 ) time complexity. Despite

the computational advantages, Subband DFT suffers from low accu-

racy, consistently showing a large relative error of around 10
−1

[14].

While Subband DFT may offer computational benefits, its accuracy

limitation makes it less suitable for applications demanding precise

and reliable results. Note that Auto-MPFT enables the evaluation

of Fourier coefficients with arbitrary numerical precision.

Pruned FFT. Pruned FFT [2, 16, 17, 28, 30] is a modification

of the standard FFT, designed for computing a subset of Fourier

coefficients. In this method, operations in a flow graph are pruned

by removing those that do not influence the specified range in

the frequency domain, achieving 𝑂 (𝑁 log𝑀) time cost. However,

the pruning strategy does not result in significant computational

savings because it leads to increased complexity in maintaining the

accuracy of the desired frequency range. Moreover, it is noteworthy

that the standard FFT is significantly more optimized than Pruned

FFT. In comparison to Pruned FFT, our Auto-MPFT is highly efficient

as it directly leverages the standard FFT as a subroutine.

PFT. PFT [20] is the current state-of-the-art method for partial

Fourier transform. The method uses a polynomial approximation

technique for efficient computations of DFT, reducing the time

complexity to𝑂 (𝑁+𝑀 log𝑀). However, there are two downsides to
the method. First, PFT is designed specifically for one-dimensional

inputs, making it less effective when applied to multidimensional

data. For example, Figure 2 compares the application of PFT and

Auto-MPFT to a two-dimensional input of size 𝑆 ×𝑆 , where the goal
is to efficiently compute 𝑇 ×𝑇 low-frequency coefficients. Because

a multidimensional DFT is equivalent to applying multiple one-

dimensional DFTs for each dimension, one can use multiple PFTs

for each axis as in Figure 2. However, this approach requires

𝑆 · (𝑆 +𝑇 log𝑇 ) +𝑇 · (𝑆 +𝑇 log𝑇 ) ∼ 𝑆2 + 𝑆𝑇 log𝑇

costs, while Auto-MPFT conducts the same computation with only

𝑆2 +𝑇 2
log𝑇 2 ∼ 𝑆2 +𝑇 2

log𝑇

operations (see Section 3.3 for the proof), which is a significant

computational gain since 𝑇 ≪ 𝑆 .
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PFT
axis=1

PFT
axis=2

Auto-MPFT (proposed)

Figure 2: Comparison between PFT and Auto-MPFT for a
two-dimensional input. While PFT is applied for each axis,
Auto-MPFT is applied only once for the entire input and
therefore requires much fewer operations.

Another disadvantage of PFT is its reliance on a manual hyper-

parameter search. Given an input of size 𝑁 , a user must choose

an appropriate divisor 𝑝 of 𝑁 to use the PFT algorithm. The over-

all performance of the algorithm varies greatly depending on the

value of 𝑝 , making it crucial to choose the optimal 𝑝 . However,

PFT does not provide an option to automatically find the optimal

value, so in the worst case, one may need to go through trial and

error for all divisors of 𝑁 . The situation becomes even worse when

the input is multidimensional because the search space grows ex-

ponentially with dimension. Note that Auto-MPFT addresses this

problem by automatically finding the optimal value of 𝑝 using a

convex optimization-based algorithm, significantly reducing the

extra cost due to the hyperparameter search.

3 Proposed Method
We propose Auto-MPFT, an efficient algorithm for partial Fourier

transform ofmultidimensional data with automatic hyperparameter

selection. The main challenges and our approaches are as follows:

(1) How can we efficiently compute partial Fourier coeffi-
cients in multidimensional DFT?We carefully modify the

Cooley-Tukey algorithm to find a set of smooth twiddle factors

in multidimensional DFT. We then approximate the twiddle

factors using multivariate polynomials. This technique decom-

poses the computation of partial Fourier coefficients into matrix

multiplications and multidimensional FFTs of small sub-blocks

of the input, achieving significantly less time cost (Section 3.1).

(2) How can we automatically find the optimal hyperparam-
eter of Auto-MPFT? The optimal hyperparameter is the value

that minimizes the time complexity of Auto-MPFT. However,

we find that the constraint function of such an optimization

problem cannot be expressed as an explicit form. We tackle this

issue by reformulating the constraint function via Chebyshev

approximation and deriving an unconstrained convex optimiza-

tion problem. This approach allows us to efficiently find the

optimal hyperparameter using well-established numerical anal-

ysis such as Newton’s method (Sections 3.2 and 3.3).

3.1 Multidimensional Partial Fourier Transform
We describe our proposed method in detail. The key ideas of Auto-

MPFT for efficient computation of partial Fourier coefficients are

as follows: (1) in the configuration phase, Auto-MPFT uses pre-

computation techniques via multivariate polynomial approxima-

tion of trigonometric functions in DFT. Moreover, it automatically

finds the optimal hyperparameter and calculates the degree of the

approximation polynomial (Algorithm 1). (2) In the computation

phase, Auto-MPFT utilizes batch matrix multiplication and FFT

algorithms optimized for multidimensional data types, which al-

lows Auto-MPFT to yield theoretically and experimentally superior

results compared to existing methods (Algorithm 2).

For a positive integer 𝜈 , let 𝜔𝜈 ≔ 𝑒−2𝜋𝑖/𝜈 be the 𝜈-th primitive

root of unity and [𝜈] ≔ {0, 1, · · · , 𝜈 − 1}. Given a 𝐷-dimensional

array 𝓐 = (𝑎𝒏) ∈ C𝑁1×···×𝑁𝐷
, the DFT of it is defined as follows:

𝑎𝒎 =
∑︁

𝒏∈∏𝑑 [𝑁𝑑 ]
𝑎𝒏

∏
𝑑
𝜔
𝑚𝑑𝑛𝑑
𝑁𝑑

(1 ≤ 𝑑 ≤ 𝐷), (1)

where 𝒏 = (𝑛1, · · · , 𝑛𝐷 ),𝒎 = (𝑚1, · · · ,𝑚𝐷 ) ∈ Z𝐷 are input and

output indices, respectively. Our goal is to compute the Fourier

coefficients 𝑎𝒎 for 𝒎 belonging to the 𝐷-dimensional box

B𝝁,𝑴 :=
∏

𝑑
[𝜇𝑑 −𝑀𝑑 , 𝜇𝑑 +𝑀𝑑 ],

where 𝝁 = (𝜇1, · · · , 𝜇𝐷 ),𝑴 = (𝑀1, · · · , 𝑀𝐷 ) ∈ Z𝐷 are the center

and radii of the box, respectively. We call the 𝐷-dimensional box

B𝝁,𝑴 a “target range.” Now assume that for each 𝑑 = 1, · · · , 𝐷 ,
we have 𝑁𝑑 = 𝑝𝑑𝑞𝑑 , where 𝑝𝑑 , 𝑞𝑑 > 1. Let 𝒑 = (𝑝1, · · · , 𝑝𝐷 ) ∈
Z𝐷 and 𝒒 = (𝑞1, · · · , 𝑞𝐷 ) ∈ Z𝐷 . The Cooley-Tukey algorithm

[9] decomposes the summation (1) with 𝒏 = 𝒒 ⊙ 𝒌 + 𝒍 , where
𝒌 ∈ ∏𝑑 [𝑝𝑑 ], 𝒍 ∈

∏
𝑑 [𝑞𝑑 ], and ⊙ is the element-wise product:

𝑎𝒎 =
∑︁

𝒌,𝒍
𝑎𝒒⊙𝒌+𝒍

∏
𝑑
𝜔
𝑚𝑑 (𝑞𝑑𝑘𝑑+𝑙𝑑 )
𝑁𝑑

=
∑︁

𝒌,𝒍
𝑎𝒒⊙𝒌+𝒍

∏
𝑑
𝜔
𝑚𝑑 𝑙𝑑
𝑁𝑑

𝜔
𝑚𝑑𝑘𝑑
𝑝𝑑

.
(2)

Following the trick 𝜔
𝑚𝑑 𝑙𝑑
𝑁𝑑

= 𝜔
𝑚𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

· 𝜔𝑚𝑑

2𝑝𝑑
from [20], we

rewrite (2) as follows:

𝑎𝒎 =
∑︁

𝒌,𝒍
𝑎𝒒⊙𝒌+𝒍

∏
𝑑
𝜔
𝑚𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

𝜔
𝑚𝑑𝑘𝑑
𝑝𝑑

𝜔
𝑚𝑑

2𝑝𝑑
. (3)

Note that |𝑙𝑑 | < 𝑞𝑑 and |𝑙𝑑 − 𝑞𝑑/2| < 𝑞𝑑/2, so the twiddle factors

{𝜔𝑚𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

} is less oscillatory compared to {𝜔𝑚𝑑 𝑙𝑑
𝑁𝑑
}, which

allows a more accurate approximation via polynomials. To apply

polynomial approximation for the set {𝜔𝑚𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

}, we provide
the following definitions. Let ∥ · ∥𝑅 be the uniform norm restricted

to a set 𝑅 ⊆ R, that is, ∥ 𝑓 ∥𝑅 ≔ sup{|𝑓 (𝑥) | : 𝑥 ∈ 𝑅} and 𝑃𝛼 be the

set of polynomials on R of degree less than 𝛼 .

Definition 3.1. Given a positive integer 𝛼 and a non-zero real

number 𝜉 , we define P𝛼,𝜉 as the best polynomial approximation to

𝑒𝜋𝑖𝑥 of degree less than 𝛼 with the restriction |𝑥 | ≤ |𝜉 |:
P𝛼,𝜉 := argmin

𝑃∈𝑃𝛼
∥𝑃 (𝑥) − 𝑒𝜋𝑖𝑥 ∥ |𝑥 | ≤ |𝜉 | ,

and P𝛼,𝜉 ≔ 1 when 𝜉 = 0. □

The uniqueness and existence of such polynomials are proved

in [29]. For the computation of the best polynomial approxima-

tion, we use the Chebyshev approximation algorithm [10]. We opt

to use the Chebyshev polynomials due to their solid theoretical

foundations, including their widespread application in achieving

optimal approximations with respect to the uniform norm and their

contribution to the derivation of an error bound of Auto-MPFT
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as we will describe in Section 3.2. Further investigation into other

types of orthogonal polynomials could provide valuable insights

and potentially improve the accuracy and efficiency of our proposed

method, which we leave as an interesting future work.

Definition 3.2. Given a tolerance 𝜖 > 0 and a positive integer

𝑟 , we define 𝜉 (𝜖, 𝑟 ) to be the scope about the origin such that the

exponential function 𝑒𝜋𝑖𝑥 can be approximated by a polynomial of

degree less than 𝑟 with approximation bound 𝜖 :

𝜉 (𝜖, 𝑟 ) := sup{𝜉 ≥ 0 : ∥P𝑟,𝜉 (𝑥) − 𝑒𝜋𝑖𝑥 ∥ |𝑥 | ≤𝜉 ≤ 𝜖}.

We express the best polynomial as P𝑟,𝜉 (𝜖,𝑟 ) (𝑥) =
∑

𝑗∈[𝑟 ] 𝑤𝜖,𝑟, 𝑗𝑥
𝑗
,

where𝑤𝜖,𝑟, 𝑗 is the 𝑗-th coefficient of the polynomial. □

Given a tolerance 𝜖 > 0, assume that we found a positive integer

𝑟𝑑 that satisfies 𝜉 (𝜖, 𝑟𝑑 ) ≥ 𝑀𝑑/𝑝𝑑 for each 𝑑 (the algorithm for

finding 𝑟𝑑 is demonstrated in Section 3.2). Then, for 𝜇𝑑 − 𝑀𝑑 ≤
𝑚𝑑 ≤ 𝜇𝑑 + 𝑀𝑑 , we decompose the twiddle factor 𝜔

𝑚𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

into 𝜔
𝜇𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

𝜔
(𝑚𝑑−𝜇𝑑 ) (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

and approximate the second

term by the polynomial P𝑟𝑑 ,𝜉 (𝜖,𝑟𝑑 ) (−2(𝑚𝑑 − 𝜇𝑑 ) (𝑙𝑑 − 𝑞𝑑/2)/𝑁𝑑 ).
Because 𝜉 (𝜖, 𝑟𝑑 ) ≥ 𝑀𝑑/𝑝𝑑 , the approximation is valid for all𝑚𝑑

such that |𝑚𝑑 − 𝜇𝑑 | ≤ | 𝑁𝑑

2(𝑙𝑑−𝑞𝑑/2) ·
𝑀𝑑

𝑝𝑑
| = | 𝑞𝑑

2𝑙𝑑−𝑞𝑑 · 𝑀𝑑 |, so in

particular, |𝑚𝑑 − 𝜇𝑑 | ≤ 𝑀𝑑 . Thus, we approximate (3) as follows:

𝑎𝒎 ≈
∑︁

𝒋,𝒌,𝒍
𝑎
(𝒌 )
𝒍

∏
𝑑
𝑏
(𝑑 )
𝑗𝑑 𝑙𝑑

𝜔
𝑚𝑑𝑘𝑑
𝑝𝑑

((𝑚𝑑 − 𝜇𝑑 )/𝑝𝑑 ) 𝑗𝑑𝜔
𝑚𝑑

2𝑝𝑑
, (4)

where 𝒋 ∈ ∏𝑑 [𝑟𝑑 ], 𝒌 ∈
∏

𝑑 [𝑝𝑑 ], 𝒍 ∈
∏

𝑑 [𝑞𝑑 ], and

𝓐
(𝒌 )

:= (𝑎 (𝒌 )
𝒍

= 𝑎𝒒⊙𝒌+𝒍 ) ∈ C𝑞1×···×𝑞𝐷 ,

𝐵 (𝑑 ) := (𝑏 (𝑑 )
𝑗𝑑 𝑙𝑑

= 𝜔
𝜇𝑑 (𝑙𝑑−𝑞𝑑/2)
𝑁𝑑

𝑤𝜖,𝑟𝑑 , 𝑗𝑑 (1 − 2𝑙𝑑/𝑞𝑑 ) 𝑗𝑑 ) ∈ C𝑟𝑑×𝑞𝑑 .

In (4), the innermost summation

∑
𝒍 𝑎
(𝒌 )
𝒍

∏
𝑑 𝑏
(𝑑 )
𝑗𝑑 𝑙𝑑

can be written

as a sequential 𝑑-mode product

𝓐
(𝒌 ) ×1 𝐵 (1) ×2 · · · ×𝐷 𝐵 (𝐷 ) . (5)

Note that there are a total of 𝐷! parenthesizations to compute (5).

We precompute the optimal parenthesization in the configuration

phase when (𝑵 ,𝑴, 𝝁, 𝜖) is given, so that we can bypass the paren-

thesization problem in the computation phase. Let us denote the

result of (5) by𝓒
(𝒌 )

:= (𝑐 (𝒌 )𝒋 ) ∈ C𝑟1×···×𝑟𝐷 . For each 𝒋, the opera-

tion

∑
𝒌 𝑐
(𝒌 )
𝒋

∏
𝑑 𝜔

𝑚𝑑𝑘𝑑
𝑝𝑑

is a 𝐷-dimensional DFT of size

∏
𝑑 𝑝𝑑 . Let

𝑐
(𝒋 )
𝒎 be the Fourier coefficients of 𝑐

(𝒌 )
𝒋 with respect to 𝒌 . Then, we

obtain the following estimation of 𝑎𝒎 :

𝑎𝒎 ≈
∑︁

𝒋
𝑐
(𝒋 )
𝒎

∏
𝑑
((𝑚𝑑 − 𝜇𝑑 )/𝑝𝑑 ) 𝑗𝑑 𝜔

𝑚𝑑

2𝑝𝑑
. (6)

The full computation is outlined in Algorithms 1 and 2.

3.2 Automatic Hyperparameter Selection
We propose a convex optimization-based algorithm for selecting the

optimal hyperparameter of Auto-MPFT. The key idea is to convert

the original optimization problem of Auto-MPFT (Problem 1) into

an unconstrained convex optimization problem (Problem 2) by

carefully approximating the constraint function.

Algorithm 1: Configuration phase of Auto-MPFT

input : Input size 𝑵 , output descriptors 𝑴 and 𝝁, and
tolerance 𝜖

output :Configuration results 𝐵 (𝑑 ) , 𝑝𝑑 , 𝑞𝑑 , 𝑟𝑑 for all 𝑑 , and

optimal parenthesization

1 for 𝑑 = 1, 2, · · · , 𝐷 do
2 Find the solution 𝑟𝑑 of Problem 2 by Newton’s method

3 Find the nearest divisor 𝑝𝑑 of 𝑁𝑑 to 𝑝 (𝑟𝑑 )
4 𝑞𝑑 ← 𝑁𝑑/𝑝𝑑
5 𝑟𝑑 ← ⌊𝑟𝑑 ⌋
6 𝐵 (𝑑 ) [𝑙, 𝑗] ← 𝜔

𝜇𝑑 (𝑙−𝑞𝑑/2)
𝑁𝑑

𝑤𝜖,𝑟𝑑 , 𝑗 (1 − 2𝑙/𝑞𝑑 ) 𝑗

7 end
8 Find the optimal parenthesization of Equation (5).

Algorithm 2: Computation phase of Auto-MPFT

input :Array 𝒂 of size

∏
𝑑 𝑁𝑑 , output descriptors 𝑴 and 𝝁,

and configuration results in Algorithm 1

output :Array 𝒂 of Fourier coefficients of 𝒂 for B𝝁,𝑴
1 𝐴(𝒌 ) [𝒍] ← 𝑎𝒒⊙𝒌+𝒍 for 𝒌 ∈

∏
𝑑 [𝑝𝑑 ] and 𝒍 ∈ ∏𝑑 [𝑞𝑑 ]

2 𝐶 (𝒌 ) ← 𝐴(𝒌 ) ×1 𝐵 (1) ×2 · · · ×𝐷 𝐵 (𝐷 ) for 𝒌 ∈ ∏𝑑 [𝑝𝑑 ]
3 𝐶 (𝒋 ) [·] ← FFT(𝐶 ( ·) [𝒋]) for 𝒋 ∈ ∏𝑑 [𝑟𝑑 ]
4 for 𝒎 ∈ B𝝁,𝑴 do
5 𝒂 [𝒎] ← ∑

𝒋 𝐶
(𝒋 ) [𝒎]∏𝑑 ((𝑚𝑑 − 𝜇𝑑 )/𝑝𝑑 ) 𝑗𝑑 𝜔

𝑚𝑑

2𝑝𝑑

6 end

3.2.1 Building an Optimization Problem. Recall that the optimal

hyperparameter is given by the minimizer of the time complexity

of Auto-MPFT. Thus, we first need to derive the time cost function

of our proposed method. Following convention, we consider only

the computation phase for a time cost because the configuration

phase contains only data-independent processes. For simplicity,

we use the following notations: 𝑁 =
∏

𝑑 𝑁𝑑 , 𝑀 =
∏

𝑑 𝑀𝑑 , 𝑝 =∏
𝑑 𝑝𝑑 , 𝑞 =

∏
𝑑 𝑞𝑑 , and 𝑟 =

∏
𝑑 𝑟𝑑 , where 𝑑 = 1, 2, · · · , 𝐷 .

The estimation (4) involves matrix multiplications (5) for each

𝒌 ∈ ∏𝑑 [𝑝𝑑 ]. Without loss of generality, we assume that the opti-

mal parenthesization is given in the order ×1,×2, · · · ,×𝐷 , which
requires 𝑂 (𝑟1𝑞1 · · ·𝑞𝐷 + 𝑟1𝑟2𝑞2 · · ·𝑞𝐷 + · · · + 𝑟1 · · · 𝑟𝐷𝑞𝐷 ) opera-
tions. Then, the total cost of computing𝓒

(𝒌 )
for all 𝒌 is given by

𝑂 (𝑝𝑞𝑟 ) = 𝑂 (𝑁𝑟 ) since

𝑝 (𝑟1𝑞1 · · ·𝑞𝐷 + 𝑟1𝑟2𝑞2 · · ·𝑞𝐷 + · · · + 𝑟1 · · · 𝑟𝐷𝑞𝐷 )

= 𝑝

(
𝑞𝑟

𝑟2 · · · 𝑟𝐷
+ 𝑞𝑟

𝑞1𝑟3 · · · 𝑟𝐷
+ · · · + 𝑞𝑟

𝑞1 · · ·𝑞𝐷−1

)
≤ 𝑝𝑞𝑟 (1 + 1/2 + · · · + 1/2𝐷−1) < 2𝑝𝑞𝑟,

for 𝑟𝑑 ≥ 1 and 𝑞𝑑 ≥ 2. We next perform 𝑟 FFTs of size 𝑝 to calculate

𝑐
(𝒋 )
𝒎 , which takes 𝑂 (𝑟𝑝 log𝑝) time. The remaining computation (6)

requires𝑂 (𝑟 ) operations for each𝒎, giving an𝑂 (𝑀𝑟 ) running time.

Hence, the time cost of Auto-MPFT can be written as

𝑂 ((𝑁 + 𝑝 log𝑝 +𝑀)𝑟 ). (7)
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Now let us consider the objective function (7) for each dimension

𝑑 = 1, 2, · · · , 𝐷 . Recall that 𝑁𝑑 and 𝑀𝑑 are input and output size

descriptors, respectively, 𝑝𝑑 is a positive divisor of 𝑁𝑑 , and 𝑟𝑑 is the

number of approximating terms depending on given tolerance 𝜖 .

Unfortunately, the variables 𝑝𝑑 and 𝑟𝑑 take discrete integer values,

precluding directly using the continuous optimization methods.

Moreover, the constraint that 𝑝𝑑 divides 𝑁𝑑 results in an irregular

domain of 𝑝𝑑 depending on the value of 𝑁𝑑 . To tackle these prob-

lems, we slightly relax the constraints, extending the domain of

𝑝𝑑 and 𝑟𝑑 to the positive real numbers and discarding the neces-

sity that 𝑝𝑑 divides 𝑁𝑑 . This leads to the following optimization

problem (from now on we omit the subscript 𝑑 for brevity):

Problem 1. Given 𝑁,𝑀 ∈ N, and 𝜖 > 0,

argmin

𝑝,𝑟>0

(𝑁 + 𝑝 log𝑝 +𝑀)𝑟

𝑠 .𝑡 . 𝜉 (𝜖, 𝑟 ) ≥ 𝑀/𝑝 □

The challenge of this optimization problem is mainly due to the

function 𝜉 , which cannot be expressed in an explicit form. Thus, we

propose reformulating the problem into an unconstrained convex

optimization problem by approximating the constraint function.

3.2.2 Approximating Error. The main idea of our optimization pro-

cess is to approximate the constraint function 𝜉 (𝜖, 𝑟 ) in Problem 1

and derive an explicit reformulation of the optimization problem.

Given a tolerance 0 < 𝜖 < 1, denote

𝑟∗ = min{𝑟 ∈ N : 𝜉 (𝜖, 𝑟 ) ≥ 𝑀/𝑝}, (8)

and 𝑐 = 𝜉 (𝜖, 𝑟∗) ≥ 𝑀/𝑝 . Consider the best polynomial approxi-

mation to 𝑒𝑐𝜋𝑖𝑥 on |𝑥 | ≤ 1 (this is equivalent to approximating

𝑒𝜋𝑖𝑥 on |𝑥 | ≤ 𝑐), and its Taylor series 𝑒𝑐𝜋𝑖𝑥 =
∑
𝑛≥0 (𝑐𝜋𝑖𝑥)𝑛/𝑛!.

For a non-negative integer 𝑛, the 𝑛-th power of 𝑥 can be written

as follows [7]: 𝑥𝑛 = 1

2
𝑛−1

(
𝑇𝑛 (𝑥) +

(𝑛
1

)
𝑇𝑛−2 (𝑥) +

(𝑛
2

)
𝑇𝑛−4 (𝑥) + · · ·

)
,

where 𝑇𝑛 (𝑥) is the Chebyshev polynomial of degree 𝑛 (for even 𝑛,

the coefficient of 𝑇0 (𝑥) is divided by 2). Then, we have

𝑒𝑐𝜋𝑖𝑥 =
∑︁
𝑛≥0

(𝑐𝜋𝑖𝑥)𝑛
𝑛!

=
∑︁
𝑛≥0

(𝑐𝜋𝑖)𝑛
𝑛!

1

2
𝑛−1

⌊𝑛/2⌋∑︁
𝑘=0

(
𝑛

𝑘

)
𝑇𝑛−2𝑘 (𝑥) .

Dropping the 𝑇𝑛−2𝑘 terms for 𝑛 − 2𝑘 ≥ 𝑟 gives the Chebyshev

approximation of degree less than 𝑟 . Let 𝜂 (𝑟 ) be the maximum

error of the approximation, so that 𝜉 (𝜂 (𝑟 ), 𝑟 ) = 𝑐 . Explicitly,

𝜂 (𝑟 ) ≔ max

|𝑥 | ≤1

���� ∑︁
𝑛−2𝑘≥𝑟

(𝑐𝜋𝑖)𝑛
𝑛!

1

2
𝑛−1

(
𝑛

𝑘

)
𝑇𝑛−2𝑘 (𝑥)

����.
Substituting 𝑛 ← 𝑛 + 2𝑘 , we can rewrite this as

𝜂 (𝑟 ) = max

|𝑥 | ≤1

����∑︁
𝑛≥𝑟

∑︁
𝑘≥0

2𝑖𝑛
(
𝑐𝜋

2

)𝑛+2𝑘 (−1)𝑘
𝑘!(𝑛 + 𝑘)!𝑇𝑛 (𝑥)

����.
We may express the involved terms using the Bessel function [1],

𝐽𝑛 (𝑤) =
∑
𝑘≥0

(−1)𝑘
𝑘!(𝑛+𝑘 )!

(
𝑤
2

)𝑛+2𝑘
, where 𝑛 is a non-negative integer

and𝑤 ∈ R, which implies𝜂 (𝑟 ) = max |𝑥 | ≤1
�� ∑

𝑛≥𝑟 2𝑖
𝑛 𝐽𝑛 (𝑐𝜋)𝑇𝑛 (𝑥)

��.
We now assume that the number 𝑟 of approximating terms has a

certain lower bound, namely 𝑟 ≥ 𝑐𝜋 − 1. This is a reasonable

assumption due to the following lemma:

Lemma 1. Given 𝑤 > 0, the sequence 𝑛 ↦→ 𝐽𝑛 (𝑤) is strictly
decreasing for 𝑛 ≥ 𝑤 − 1 and converges to zero as 𝑛 tends to∞. □

Proof. Let 𝜈 be an integer such that 𝜈 ≥ 𝑤 − 1. We should show

that 𝐽𝜈+1 (𝑤) < 𝐽𝜈 (𝑤) holds. Since the Bessel function satisfies the

recurrence relation

𝐽𝑛 (𝑤) =
2(𝑛 + 1)

𝑤
𝐽𝑛+1 (𝑤) − 𝐽𝑛+2 (𝑤), ∀𝑛 ≥ 0, (9)

the inequality is equivalent to 𝐽𝜈+1 (𝑤) < 2(𝜈+1)
𝑤 𝐽𝜈+1 (𝑤) − 𝐽𝜈+2 (𝑤),

or

𝐽𝜈+2 (𝑤) <
(
2(𝜈 + 1)

𝑤
− 1

)
𝐽𝜈+1 (𝑤) .

Replacing 𝐽𝜈+1 (𝑤) using the recurrence relation again yields

𝐽𝜈+3 (𝑤) <
(
2(𝜈 + 2)

𝑤
− 1

2(𝜈+1)
𝑤 − 1

)
𝐽𝜈+2 (𝑤).

In general, we obtain the following equivalent condition:

𝐽𝜈+𝑠+1 (𝑤) < 𝑀𝑠 · 𝐽𝜈+𝑠 (𝑤),

where𝑀0 = 1 and𝑀𝑠 =
2(𝜈+𝑠 )

𝑤 − 1

𝑀𝑠−1
for 𝑠 ≥ 1. A simple induction

shows that𝑀𝑠 ≥ 1 for all 𝑠 because

𝑀𝑠 =
2(𝜈 + 𝑠)

𝑤
− 1

𝑀𝑠−1
≥ 2(𝜈 + 1)

𝑤
− 1

𝑀𝑠−1
≥ 2 − 1

𝑀𝑠−1
≥ 1

provided that 𝑀𝑠−1 ≥ 1. Thus, it is sufficient to prove that there

exists an integer 𝑠 ≥ 0 such that 𝐽𝜈+𝑠+1 (𝑤) < 𝐽𝜈+𝑠 (𝑤). Now

𝐽𝑛 (𝑤) =
1

𝑛!

(
𝑤

2

)𝑛 ∑︁
𝑘≥0

𝑛!

𝑘!(𝑛 + 𝑘)!

(
− 𝑤2

4

)𝑘
∼ 1

𝑛!

(
𝑤

2

)𝑛
for 𝑛 ≫ 𝑤2

, hence

𝐽𝜈+𝑠+1 (𝑤)
𝐽𝜈+𝑠 (𝑤)

∼ 1

𝜈 + 𝑠 + 1

(
𝑤

2

)
< 1

for sufficiently large 𝑠 . This completes the proof. □

In other words, the condition 𝑟 ≥ 𝑐𝜋 − 1 together with Lemma 1

ensures that the magnitude |2𝑖𝑛 𝐽𝑛 (𝑐𝜋) | of coefficients in the Cheby-

shev approximation gap strictly decreases. Thus, we can estimate

the extreme points of the function 𝑥 ↦→ ∑
𝑛≥𝑟 2𝑖

𝑛 𝐽𝑛 (𝑐𝜋)𝑇𝑛 (𝑥) by
the extreme points 𝑥𝑘 of the dominant term 𝑇𝑟 (𝑥):

𝑥𝑘 = cos(𝑘𝜋/𝑟 ), 𝑘 = 0, 1, · · · , 𝑟 .

Furthermore, it is easy to check that the magnitude of extrema

of

∑
𝑛≥𝑟 2𝑖

𝑛 𝐽𝑛 (𝑐𝜋)𝑇𝑛 (𝑥) peaks at around 𝑥 = 0, which implies

𝜂 (𝑟 ) ≈ |∑𝑛≥𝑟 2𝑖
𝑛 𝐽𝑛 (𝑐𝜋)𝑇𝑛 (𝑥 ⌊𝑟/2⌋ ) |, or

𝜂 (𝑟 ) ≈
{��∑

𝑛≥𝑟 2𝑖
𝑛 𝐽𝑛 (𝑐𝜋) cos(𝜋𝑛/2)

�� 𝑟 : even�� ∑
𝑛≥𝑟 2𝑖

𝑛 𝐽𝑛 (𝑐𝜋) cos(𝜋𝑛(𝑟 − 1)/2𝑟 )
�� 𝑟 : odd

(10)

using 𝑇𝑛 (cos𝜃 ) = cos(𝑛𝜃 ). Our next goal is to prove that 𝜂 (𝑟 ) is
bounded above as in Lemma 2. We then use the upper bound to

derive an approximate relation between the parameters 𝑝 and 𝑟 .

Lemma 2. If 𝑟 ≥ 2, the approximation error function 𝜂 (𝑟 ) satisfies

𝜂 (𝑟 ) ≤ 𝑈 (𝑟 ) ≔ 2

√
17

4 −
√
𝑒

𝐶𝑟

𝑟 !
𝑒−

𝐶2

𝑟+1 (𝐶 = 𝑐𝜋/2) . □

Proof. See Supplement A.1. □

 

2332



KDD ’24, August 25–29, 2024, Barcelona, Spain Yong-chan Park, Jongjin Kim, and U Kang

3.2.3 Finding a Relation Between 𝑝 and 𝑟 . Assume that an integer

𝑟0 ≥ 2 satisfies the equation 𝑈 (𝑟0) = 𝜖 . Then

𝜂 (𝑟0) ≤ 𝑈 (𝑟0) = 𝜖 = 𝜂 (𝑟∗),
where the last equality holds since 𝜉 (𝜖, 𝑟∗) = 𝑐 = 𝜉 (𝜂 (𝑟∗), 𝑟∗). Note
that 𝜂 (𝑟 ) is non-decreasing by definition, so 𝑟∗ ≤ 𝑟0. This implies

that solving the equation

𝑈 (𝑟 ) = 𝜖 (11)

and rounding down the solution 𝑟 ∈ R gives an estimate of 𝑟∗ ∼ ⌊𝑟⌋.
Unfortunately, (11) does not have an algebraic solution due to the

presence of factorial term. To address this problem, we employ the

fixed-point iteration method to compute an approximate solution of

the equation. Specifically, we consider 𝑈 to be a function of 𝐶 and

find an implicit expression of 𝑟 with respect to𝐶 . By this technique,

we can derive an approximate relation 𝑝 (𝑟 ) which denotes the value
of 𝑝 depending on 𝑟 . Letting 𝛼 =

4−
√
𝑒

2

√
17

, we write (11) as follows:

𝐶𝑟

𝛼𝑟 !
𝑒−

𝐶2

𝑟+1 = 𝜖 ⇐⇒ 𝐶𝑟 = 𝛼𝜖𝑟 ! · 𝑒
𝐶2

𝑟+1 ⇐⇒ 𝐶 = (𝛼𝜖𝑟 !)
1

𝑟 𝑒
𝐶2

𝑟 (𝑟+1) .

Define 𝑓 (𝑥) ≔ (𝛼𝜖𝑟 !)
1

𝑟 𝑒
𝑥2

𝑟 (𝑟+1)
for 𝑥 ∈ R. Then, the problem be-

comes computing a fixed point of 𝑓 . Since 𝑓 ′ (𝑥) = (𝛼𝜖𝑟 !)
1/𝑟

𝑟 (𝑟+1) 2𝑥𝑒
𝑥2

𝑟 (𝑟+1)
,

we have 𝑓 ′ (0) = 0. Moreover, 𝑓 ′ (𝐶) = 2𝐶
𝑟 (𝑟+1) 𝑓 (𝐶) =

2𝐶2

𝑟 (𝑟+1) pro-
vided that 𝐶 is a fixed point of 𝑓 . It follows from 𝐶 ≤ (𝑟 + 1)/2 and
𝑟 ≥ 2 that 𝑓 ′ (𝐶) = 2𝐶2

𝑟 (𝑟+1) ≤
(𝑟+1)2
2𝑟 (𝑟+1) =

𝑟+1
2𝑟 ≤

3

4
. Because 𝑓 ′ (𝑥) is

non-decreasing for 𝑥 ≥ 0, there exist 𝐿 < 1 and 𝛿 > 0 such that

|𝑓 ′ (𝑥) | ≤ 𝐿,∀𝑥 ∈ (−𝛿,𝐶 + 𝛿) . This implies that 𝑓 is a contraction

mapping function on (−𝛿,𝐶 + 𝛿), so the fixed-point iteration

𝐶0 ∈ (−𝛿,𝐶 + 𝛿), 𝐶𝑛+1 = 𝑓 (𝐶𝑛), 𝑛 = 0, 1, 2, · · ·
converges to the unique fixed point 𝐶 by the Banach fixed-point

theorem [3]. We set 𝐶0 = 0 and estimate 𝐶 by the result of the

second iteration of the algorithm:

𝐶 ∼ 𝐶2 = 𝑓 (𝑓 (0)) = 𝑓 ((𝛼𝜖𝑟 !)
1

𝑟 ) = (𝛼𝜖𝑟 !)
1

𝑟 𝑒
1

𝑟 (𝑟+1) (𝛼𝜖𝑟 !)
2/𝑟

.

We now assume that 𝑐 ∼ 𝑀/𝑝 , which is reasonable due to the

definition of 𝑟∗ in (8). This leads to the following approximate

relation between the parameters 𝑝 and 𝑟 :

𝑝 ∼ 𝑀

𝑐
=
𝜋𝑀

2

𝐶−1 ∼ 𝜋𝑀

2

(𝛼𝜖𝑟 !)−
1

𝑟 𝑒
− 1

𝑟 (𝑟+1) (𝛼𝜖𝑟 !)
2/𝑟

.

3.2.4 Convexity of the Objective Function. We have shown that the

parameter 𝑝 can be expressed in terms of 𝑟 with the relation,

𝑝 (𝑟 ) ≔ 𝜋𝑀

2

(𝛼𝜖𝑟 !)−
1

𝑟 𝑒
− 1

𝑟 (𝑟+1) (𝛼𝜖𝑟 !)
2/𝑟
, 𝛼 =

4 −
√
𝑒

2

√
17

. (12)

By employing this relation, we reduce the objective function of

Problem 1 into a functional form dependent on only 𝑟 , removing

the inequality constraint:

Problem 2. Given 𝑁,𝑀 ∈ N, and 𝜖 > 0,

argmin

𝑟≥1
(𝑁 + 𝑝 (𝑟 ) log 𝑝 (𝑟 ) +𝑀)𝑟 □

In the following theorem, we prove that the objective function in

this problem is convex for 𝑟 ≥ 1. Consequently, Problem 2 becomes

an unconstrained convex optimization problem.

Theorem 3. The objective function 𝑟 ↦→ (𝑁 +𝑝 (𝑟 ) log 𝑝 (𝑟 ) +𝑀)𝑟
of Problem 2 is convex for 𝑟 ≥ 1. □

Proof. See Supplement A.2. □

The convexity of the objective function guarantees the conver-

gence of second-order optimization techniques such as Newton’s

method. After the optimal solution 𝑟∗ that minimizes the objective

function is found, we use the function 𝑝 (𝑟 ) to approximate the

optimal 𝑝∗ = 𝑝 (𝑟∗) and select the nearest divisor of 𝑁 to 𝑝∗, which
replaces the manual selection process. The automatic configuration

phase of Auto-MPFT is outlined in Algorithm 1.

3.3 Theoretical Analysis
We present theoretical analysis on the time and space complexities

of Auto-MPFT and its approximation bound.

3.3.1 Time Complexity. In Section 3.2.1, we have already seen that

the time cost of Auto-MPFT can be expressed as 𝑂 ((𝑁 + 𝑝 log𝑝 +
𝑀)𝑟 ). Note that 𝑁 =

∏
𝑑 𝑁𝑑 is an input size, 𝑀 =

∏
𝑑 𝑀𝑑 is an

output size, 𝑝 =
∏

𝑑 𝑝𝑑 , and 𝑟 =
∏

𝑑 𝑟𝑑 , where 𝑝𝑑 is a divisor of 𝑁𝑑

and 𝑟𝑑 is an approximation order given a tolerance 𝜖 . However, the

values of 𝑝 and 𝑟 in the above time cost are internally determined

by the configuration phase (Algorithm 1). As a result, users cannot

directly find out these values, making it inconvenient to use the

time cost function. To address this limitation, we transform the

time cost into a functional form that depends only on 𝑁 ,𝑀 , and 𝜖 ,

which are the inputs of Auto-MPFT. We first present the following

two lemmas and employ them for the proof of Theorem 6.

Lemma 4. For each 𝑑 = 1, 2, · · · , 𝐷 , we have the asymptotic equa-
tion 𝑟𝑑 = 𝑂 (log(1/𝜖)). □

Proof. Recall that by Equation (11), we have the following as-

ymptotic equation between 𝜖 and 𝑟𝑑 :

𝜖 ∼ 𝑈 (𝑟𝑑 ) =
2

√
17

4 −
√
𝑒

𝐶𝑟𝑑

𝑟𝑑 !
𝑒
− 𝐶2

𝑟𝑑 +1 .

Then there exist 𝐵1, 𝐵2 > 0 such that for sufficiently large 𝑟𝑑 ,

𝜖 <
𝐵1 ·𝐶𝑟𝑑

𝑟𝑑 !
𝑒
− 𝐶2

𝑟𝑑 +1 <
𝐵1 ·𝐶𝑟𝑑

𝑟𝑑 !
<

𝐵2

𝑒𝑟𝑑
.

It follows that 𝑒𝑟𝑑 < 𝐵2/𝜖 , and thus 𝑟𝑑 = 𝑂 (log(1/𝜖)). □

Lemma 5. If 𝑁𝑑 is 𝑏𝑑 -smooth for some 𝑏𝑑 ≥ 2 (that is, none of
prime factors of 𝑁𝑑 is greater than 𝑏𝑑 ) and 1 ≤ 𝑀𝑑 ≤ 𝑁𝑑 , then there
exists a divisor 𝑝𝑑 of 𝑁𝑑 satisfying 𝑝𝑑 = Θ(𝑀𝑑 ). □

Proof. Following the proof of Theorem 3 of [20], we prove that

there exists a divisor 𝑝𝑑 of 𝑁𝑑 such that𝑀𝑑/
√︁
𝑏𝑑 ≤ 𝑝𝑑 <

√︁
𝑏𝑑𝑀𝑑 .

Suppose that none of 𝑁𝑑 ’s divisors belongs to [𝑀𝑑/
√︁
𝑏𝑑 ,

√︁
𝑏𝑑𝑀𝑑 ).

Let 1 = 𝑝1 < 𝑝2 < · · · < 𝑝𝑛 = 𝑁𝑑 be the enumeration of all

positive divisors of 𝑁𝑑 in increasing order. It is clear that 𝑝1 <√︁
𝑏𝑑𝑀𝑑 and 𝑀𝑑/

√︁
𝑏𝑑 < 𝑝𝑛 since 𝑏𝑑 ≥ 2 and 1 ≤ 𝑀𝑑 ≤ 𝑁𝑑 . Then,

there exists an 𝑖 ∈ {1, 2, · · · , 𝑛 − 1} so that 𝑝𝑖 < 𝑀𝑑/
√︁
𝑏𝑑 and

𝑝𝑖+1 ≥
√︁
𝑏𝑑𝑀𝑑 . Since 𝑁𝑑 is 𝑏𝑑 -smooth and 𝑝𝑖 < 𝑁𝑑 , at least one

of 2𝑝𝑖 , 3𝑝𝑖 , · · · , 𝑏𝑑𝑝𝑖 must be a divisor of 𝑁𝑑 . However, this is a

contradiction because we have 𝑝𝑖+1/𝑝𝑖 > (
√︁
𝑏𝑑𝑀𝑑 ) (𝑀𝑑/

√︁
𝑏𝑑 )−1 =

𝑏𝑑 , so none of 2𝑝𝑖 , 3𝑝𝑖 , · · · , 𝑏𝑑𝑝𝑖 can be a divisor of 𝑁𝑑 , which

completes the proof. □
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Theorem 6. For 𝑑 = 1, 2, · · · , 𝐷 , let 𝑁𝑑 be 𝑏𝑑 -smooth for some
𝑏𝑑 ≥ 2. Then the time complexity of Auto-MPFT has an asymptotic
upper bound 𝑂 ((𝑁 +𝑀 log𝑀) (log(1/𝜖))𝐷 ). □

Proof. It follows that 𝑟𝑑 = 𝑂 (log(1/𝜖)) by Lemma 4, which

gives an upper bound for 𝑟 =
∏

𝑑 𝑟𝑑 = 𝑂 ((log(1/𝜖))𝐷 ). Using
Lemma 5, we can find a divisor 𝑝𝑑 of 𝑁𝑑 such that 𝑝𝑑 = Θ(𝑀𝑑 ) for
all 𝑑 , resulting in 𝑝 =

∏
𝑑 𝑝𝑑 = Θ(∏𝑑 𝑀𝑑 ) = Θ(𝑀). Replacing 𝑝

and 𝑟 in the original upper bound of the time complexity yields

𝑂 ((𝑁 + 𝑝 log𝑝 +𝑀)𝑟 ) = 𝑂 ((𝑁 +𝑀 log𝑀) (log(1/𝜖))𝐷 ),

hence the proof. □

3.3.2 Space Complexity. DFT is frequently required to be deployed

on devices with limited performance capabilities. Thus, it is es-

sential to consider memory constraints when implementing the

algorithm in real-world applications. In Theorem 7, we prove that

the space complexity of Auto-MPFT is asymptotically bounded

by the sum of the input and output sizes, 𝑁 + 𝑀 . This indicates

that Auto-MPFT is a space-optimal algorithm, requiring only the

minimum space necessary for input and output.

Theorem 7. Auto-MPFT is space-optimal, that is, the space com-
plexity of it has an asymptotic upper bound 𝑂 (𝑁 +𝑀). □

Proof. In the configuration phase (Algorithm 1), Auto-MPFT

stores matrices of size 𝑟𝑑 × 𝑞𝑑 (𝑑 = 1, · · · , 𝐷) for multivariate

polynomial approximation, which requires 𝑂 (∑𝑑 𝑟𝑑𝑞𝑑 ) space cost.
In the computation phase (Algorithm 2), we need 𝑂 (𝑁 ) space to
read an input data array (line 1 in Algorithm 2), 𝑂 (𝑝𝑟 ) space for
polynomial approximation results (line 2 in Algorithm 2), and𝑂 (𝑀)
space to save an output (lines 4-6 in Algorithm 2), which sum up

to 𝑂 (𝑁 + 𝑝𝑟 +𝑀). Typically, the number 𝑟𝑑 is much smaller than

𝑝𝑑 and 𝑞𝑑 if 𝑁𝑑 = 𝑝𝑑𝑞𝑑 is sufficiently large, so we may assume

that (1) 𝑂 (∑𝑑 𝑟𝑑𝑞𝑑 ) = 𝑜 (∑𝑑 𝑝𝑑𝑞𝑑 ) = 𝑜 (∑𝑑 𝑁𝑑 ) = 𝑜 (𝑁 ) and (2)

𝑂 (𝑝𝑟 ) = 𝑜 (𝑝𝑞) = 𝑜 (𝑁 ). These lead to a total of

𝑂 (∑𝑑 𝑟𝑑𝑞𝑑 + 𝑁 + 𝑝𝑟 +𝑀) = 𝑂 (𝑁 +𝑀)

space complexity of Auto-MPFT. □

3.3.3 Approximation Bound. We present a theoretical bound for

the approximation of the polynomial P. The estimated Fourier

coefficient of 𝒂 is denoted as E(𝒂). According to Theorem 8, the

approximation bound within the target range is contingent on the

data-specific total weight ∥𝒂∥1 of the original array and the given

tolerance 𝜖 , where ∥ · ∥1 represents the ℓ1 norm. It is important to

note that 𝜖 influences the number 𝑟 of approximating terms (see

Lemma 4), consequently affecting the error bound ∥𝒂−E(𝒂)∥B𝝁,𝑴 .

This shows that, by adjusting 𝜖 accordingly, Fourier coefficients can

be computed with arbitrary numerical precision using Auto-MPFT.

Theorem 8. Given a sufficiently small tolerance 𝜖 > 0, the esti-
mated Fourier coefficient E(𝒂) in (4) satisfies

∥𝒂 − E(𝒂)∥B𝝁,𝑴 ≤ ∥𝒂∥1 · (2𝐷 − 1)𝜖,

where ∥ · ∥𝑅 denotes the uniform norm restricted to set 𝑅 ⊆ R𝐷 . □

Proof. See Supplement A.3. □

Table 1: Summary of datasets.

Dataset Type # of Images Size

{S𝑛}15𝑛=8 Synthetic 1K 2
𝑛 × 2𝑛

Cityscapes
1

Real-world 5K 2048 × 1024
ADE20K

2
Real-world 20K 2048 × 2048

DF2K
3

Real-world 3K 2040 × 1536
RiceLeaf

4
Real-world 3.3K 3120 × 3120

Bird
5

Real-world 306 6000 × 4000

4 Experiments
Through experiments, we answer the following questions:

Q1 Running time (Section 4.2). How rapidly does Auto-MPFT

compute a part of Fourier coefficients compared to baselines

without compromising accuracy?

Q2 Automatic hyperparameter selection (Section 4.3). How
accurately and quickly does the optimization-based algorithm

find the optimal hyperparameter of Auto-MPFT?

Q3 Impact of varying precision (Section 4.4).What impact does

varying precision settings have on the runtime of Auto-MPFT?

4.1 Experimental Setup
Machine. Our system utilizes an Intel Core i7-10700KF @ 3.80GHz

processor paired with 32GB of RAM.

Datasets. Although our proposed method can be applied to any

multidimensional data, we focus our experiments on two-dimensional

image datasets for clarity of presentation. Table 1 summarizes the

datasets used in our experiments. For 𝑛 = 8, · · · , 15, S𝑛 contains

1,000 matrices of size 2
𝑛×2𝑛 with elements being random real num-

bers ranging from 0 to 1. Cityscapes and ADE20K offer a wide range

of indoor and outdoor scene images with detailed scene segmenta-

tion labels, supporting semantic segmentation research. DF2K is

an image dataset for image super-resolution and restoration tasks

which is composed of around 3,000 2k resolution images. RiceLeaf

contains about 3,300 4k images of rice leaves for rice disease de-

tection. Bird is a dataset for bird species classification task and

contains 306 high-resolution images of birds. Note that the images

in each dataset were resized to the same resolution.

Baselines. We compare Auto-MPFT with PFT and Pruned FFT

as well as optimized FFT libraries, FFTW and Intel Math Kernel

Library. All of the methods are implemented using C++.

(1) FFTW: FFTW
6
[11, 12] is among the fastest publicly available

FFT implementations with hardware-specific optimizations. We

employ the optimized version of FFTW 3.3.5, without including

the pre-processing for configuration as the run-time cost.

(2) MKL: Intel Math Kernel Library
7
(MKL), known for its opti-

mized mathematical functions such as FFT, often outperforms

FFTW in terms of running time. We conduct all the experiments

using an Intel processor to ensure optimal performance.

1
https://www.cityscapes-dataset.com/

2
https://groups.csail.mit.edu/vision/datasets/ADE20K/

3
https://www.kaggle.com/datasets/thaihoa1476050/df2k-ost

4
https://www.kaggle.com/datasets/shayanriyaz/riceleafs

5
https://www.kaggle.com/datasets/akash2907/bird-species-classification

6
http://www.fftw.org/index.html

7
https://software.intel.com/mkl
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(3) Pruned FFT: Pruned FFT8 [2, 16, 17, 28, 30] is a pruned variant
of FFT specialized for rapid computation of specific part of an

output, utilizing FFTW as a subroutine.

(4) PFT: PFT9 [20] is the current state-of-the-art algorithm for one-

dimensional partial Fourier transform. For multidimensional

data, PFT is applied for each axis of the data.

Measure. We opt for single-precision floating-point format for all

experiments. The tolerance 𝜖 is adjusted to maintain a relative ℓ2
error below 10

−6
, thereby ensuring that the estimated coefficients

possess at least 6 significant figures across all methods. Explicitly,

Relative ℓ2 Error =

√︄∑
𝑚∈B |𝑎𝑚 − E(𝑎)𝑚 |2∑

𝑚∈B |𝑎𝑚 |2
< 10

−6,

where 𝒂 is the actual Fourier coefficient, E(𝒂) is the estimation of

𝒂, and B is the target range.

4.2 Running Time (Q1)
The running time of Auto-MPFT is measured across synthetic and

real-world datasets, with variations in input and output sizes.

4.2.1 Synthetic Datasets. We generate 1,000 random synthetic ma-

trices of size 2
𝑛×2𝑛 for each𝑛 = 8, · · · , 15, and evaluate the average

running time of Auto-MPFT and competitors for all the matrices

with different settings.

Running time vs. input size. We fix the target range to be

2
6 × 26 Fourier coefficients centered at the origin and evaluate the

average running time vs. input sizes 2
8×28, · · · , 215×215. In Figure

3(a), the running time of the five algorithms is illustrated concerning

varying input sizes. We observe that Auto-MPFT outperforms the

baselines in most cases where the output has a sufficiently smaller

size than the input. As a result, Auto-MPFT achieves a speedup of

up to 4.7× compared to the baselines. Note that when 𝑀 is very

close to 𝑁 , the time cost of Auto-MPFT tends to 𝑂 (𝑁 + 𝑁 log𝑁 )
according to Theorem 6, thus it exhibits a slightly slower speed

than FFT that has an 𝑂 (𝑁 log𝑁 ) time complexity.

Running time vs. output size. In the next setting, we fix the

input size to 𝑁 = 2
15 × 215 and evaluate the average running time

vs. output sizes 2
5 × 25, · · · , 213 × 213. Figure 3(b) shows the results,

where Auto-MPFT consistently outperforms PFT and Pruned FFT,

achieving up to 3.3× speedup. We also observe that the running

times of the full FFT methods (MKL and FFTW) do not benefit from

the information of output size.

4.2.2 Real-World Datasets. We evaluate Auto-MPFT on the five

real-world datasets with output sizes 2
4 × 2

4
, · · · , 28 × 2

8
for

Cityscapes, ADE20K, and DF2K, and 2
4 × 24, · · · , 29 × 29 for Rice-

Leaf and Bird. As illustrated in Figure 4, Auto-MPFT outperforms

the competitors across all datasets, delivering speedups of up to

7.6×. Notably, PFT shows low efficiency especially when the size

of the input is relatively small (Cityscapes, ADE20K, and DF2K),

which is not the case for Auto-MPFT. These results clearly show

the robustness of Auto-MPFT in diverse real-world settings.

8
http://www.fftw.org/pruned.html

9
https://github.com/snudatalab/PFT
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Figure 3: (a) Running time vs. input size for output size 26×26,
and (b) running time vs. output size for input size 215 × 215.
The x-axis is the length of one axis of data. To ensure the
same precision across all methods, we have standardized the
relative error to be strictly below 10

−6. Auto-MPFT consis-
tently outperforms the partial Fourier transform methods,
PFT and Pruned FFT. In addition, the smaller the output size
is, Auto-MPFT becomes more efficient than MKL and FFTW.

4.3 Automatic Hyperparameter Selection (Q2)
4.3.1 Accuracy of Optimization Algorithm. To evaluate the accu-

racy of our optimization algorithm for automatic hyperparameter

selection, we find the ground-truth optimal value of 𝑝 for the syn-

thetic datasets {S𝑛}15𝑛=8 with varying 𝑀 , and compare it with the

estimated 𝑝 by our method. Table 2 shows that our algorithm accu-

rately finds the optimal value of 𝑝 in the majority of cases, and in

instances where it deviates, the margin of error remains minimal.

It is evident from these results that our optimization algorithm can

effectively replace manual processes with little sacrifice in accuracy.

4.3.2 Running Time of Optimization Algorithm. We further validate

the efficacy of our optimization algorithm by comparing its time

cost for selecting the optimal hyperparameter to that of the manual

search process. To this end, we fix the output size to 2
8×28 and vary

the input size from 2
9 × 29 to 2

15 × 215. Table 3 demonstrates that

the automatic algorithm by Auto-MPFT achieves remarkably faster

processing times compared to the manual process. This discrep-

ancy arises because the manual process necessitates executing the

entire algorithm for each 𝑝 to determine its optimal value, whereas

Auto-MPFT simplifies the process by efficiently solving a convex op-

timization problem. It is also worth mentioning that the discrepancy

becomes more significant with larger input sizes.

4.4 Impact of Varying Precision (Q3)
Recall that Auto-MPFT offers the flexibility to set any numerical pre-

cision (Theorem 8). We investigate the trade-off between precision

and running time of Auto-MPFT by adjusting the tolerance 𝜖 . For a

fixed input size 2
15 × 215, we vary the precision target from 10

−6
to

10
−4

or 10
−2

across various output sizes. Table 4 shows the results,

with the improvement of running times for each setting enclosed

in parentheses. The reduction reaches up to 21.2% or 49.8% when

the precision is relaxed to 10
−4

or 10
−2

, respectively. This indicates

that one could gain advantages from the compromise, particularly

when speed is crucial despite a slight trade-off in precision.
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Figure 4: Running time vs. output size for the real-world datasets, where the x-axis is the length of one axis of the target range.
We have standardized the relative error of all methods to be strictly below 10

−6. Our proposed Auto-MPFT exhibits superior
performance across all datasets, especially in cases where the output has a sufficiently smaller size than the input.

Table 2: Validation of our optimization algorithm for auto-
matic hyperparameter search. Entries without parentheses
denote that our estimate 𝑝 equals to the ground-truth 𝑝, and
those with parentheses show both values in the form 𝑝 (𝑝).
Auto-MPFT successfully detects the optimal value in most
scenarios, with minor errors occurring infrequently.

Output

size

Input size

2
8×2

2
9×2

2
10×2

2
11×2

2
12×2

2
13×2

2
14×2

2
15×2

2
6 × 26 2

4
2
5

2
5

2
6

2
6

2
7

2
8
(2
7
) 2

9
(2
8
)

2
7 × 27 2

5
2
5

2
6

2
6

2
7

2
7

2
8
(2
7
) 2

9

2
8 × 28 - 2

6
2
6

2
6

2
7

2
8

2
8

2
9

2
9 × 29 - - 2

7
2
7

2
7

2
8

2
9

2
9

2
10 × 210 - - - 2

7
(2
8
) 2

8
2
8

2
9

2
9

2
11 × 211 - - - - 2

8
(2
9
) 2

9
2
9

2
10

2
12 × 212 - - - - - 2

9
(2
10
) 2

10
2
10

2
13 × 213 - - - - - - 2

10
(2
11
) 2

11

Table 3: Comparison of running time (𝝁s) for finding the
optimal hyperparameter 𝑝 using our optimization algorithm
(Auto-MPFT) vs. manual search.Manual-best denotes finding
the optimal value in a single attempt, whereasManual-worst
involves testing all divisors of 2𝑛 except 1 and 2

𝑛 . Auto-MPFT
significantly outperforms the manual search process.

2
𝑛 × 2𝑛 Auto-MPFT Manual-best Manual-worst

2
9 × 29 3.596 63.30 860.9

2
10 × 210 3.431 70.39 1273.3

2
11 × 211 2.829 85.94 2083.7

2
12 × 212 2.225 60.13 3638.6

2
13 × 213 1.653 79.34 6707.4

2
14 × 214 1.626 116.27 12508.7

2
15 × 215 2.971 124.26 24113.0

5 Conclusions
WeproposeAuto-MPFT (AutomaticMultidimensional Partial Fourier

Transform), an efficient and accurate method for computing a part

of Fourier coefficients with automatic hyperparameter selection.

Auto-MPFT decomposes the original DFT into small sub-blocks

and approximates some of trigonometric functions by Chebyshev

Table 4: Average running time (ms) of Auto-MPFT with input
size 215 × 215 and different precision settings. Notably, we ob-
serve up to 49.8% improvement in running time when preci-
sion requirements are relaxed, offering a beneficial trade-off,
particularly when prioritizing fast evaluations.

Output

size

Precision

10
−6

10
−4

10
−2

2
5 × 25 133.7 131.0 (2.0%) 126.7 (5.2%)

2
6 × 26 135.1 132.3 (2.0%) 127.6 (5.6%)

2
7 × 27 140.8 138.3 (1.8%) 133.5 (5.2%)

2
8 × 28 142.3 139.6 (1.9%) 135.1 (5.1%)

2
9 × 29 169.5 161.3 (4.9%) 148.1 (12.6%)

2
10 × 210 208.3 188.1 (9.7%) 158.8 (23.8%)

2
11 × 211 369.1 290.9 (21.2%) 201.1 (45.5%)

2
12 × 212 905.9 732.5 (19.1%) 463.0 (48.9%)

2
13 × 213 3012.5 2465.8 (18.1%) 1510.9 (49.8%)

polynomials, reducing the arithmetic cost. Furthermore, we present

an efficient optimization algorithm for finding the optimal hyperpa-

rameter of Auto-MPFT. Experiments demonstrate that Auto-MPFT

outperforms the state-of-the-art baseline models, delivering up to

7.6× speedup without compromising accuracy. We also illustrate

the efficacy of our convex optimization-based algorithm in select-

ing the optimal hyperparameter of Auto-MPFT, which leads to a

significant reduction in the additional cost attributed to hyperpa-

rameter search. Future tasks involve enhancing the execution of

Auto-MPFT through additional optimization.
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A Supplement
A.1 Proof of Lemma 2

Proof. We first show that for 𝑟 ≥ 2

𝜂 (𝑟 ) ≤
√
17

2

∑︁
𝑛≥0

𝐽𝑟+2𝑛 (𝑐𝜋) . (13)

For even 𝑟 , it is straightforward from (10) that

𝜂 (𝑟 ) ≤
∑︁
𝑛≥0
|2𝑖𝑟+𝑛 𝐽𝑟+𝑛 (𝑐𝜋) cos(𝜋 (𝑟 + 𝑛)/2) |

= 2

∑︁
𝑛≥0

𝐽𝑟+2𝑛 (𝑐𝜋) ≤
√
17

2

∑︁
𝑛≥0

𝐽𝑟+2𝑛 (𝑐𝜋).

For odd 𝑟 , let 𝜃𝑟 = 𝜋 (𝑟 − 1)/2𝑟 . Using the recurrence relation (9),

we have

𝜂 (𝑟 )
2

=

����∑︁
𝑛≥𝑟

𝑖𝑛 𝐽𝑛 (𝑐𝜋) cos𝑛𝜃𝑟
����

=

����∑︁
𝑛≥0

𝑖𝑛 𝐽𝑟+𝑛 (𝑐𝜋) cos(𝑟 + 𝑛)𝜃𝑟
����

=

����∑︁
𝑛≥0

𝑖2𝑛 𝐽𝑟+2𝑛 (𝑐𝜋) cos(𝑟 + 2𝑛)𝜃𝑟

+ 𝑖2𝑛+1 𝐽𝑟+2𝑛+1 (𝑐𝜋) cos(𝑟 + 2𝑛 + 1)𝜃𝑟
����

=

����∑︁
𝑛≥0

𝑖2𝑛 𝐽𝑟+2𝑛 (𝑐𝜋) cos(𝑟 + 2𝑛)𝜃𝑟

+ 𝑖2𝑛+1𝐶 𝐽𝑟+2𝑛 (𝑐𝜋) + 𝐽𝑟+2𝑛+2 (𝑐𝜋)
𝑟 + 2𝑛 + 1 cos(𝑟 + 2𝑛 + 1)𝜃𝑟

����.
We separate the 𝐽𝑟 (𝑐𝜋) term from the summand as follows:

𝜂 (𝑟 )
2

=

����( cos 𝑟𝜃𝑟 + 𝑖𝐶 cos(𝑟 + 1)𝜃𝑟
𝑟 + 1

)
𝐽𝑟 (𝑐𝜋)

+
∑︁
𝑛≥1

𝑖2𝑛
(
cos(𝑟 + 2𝑛)𝜃𝑟 + 𝑖𝐶

(
cos(𝑟 + 2𝑛 + 1)𝜃𝑟

𝑟 + 2𝑛 + 1

− cos(𝑟 + 2𝑛 − 1)𝜃𝑟
𝑟 + 2𝑛 − 1

))
𝐽𝑟+2𝑛 (𝑐𝜋)

����.
Because 𝑟 ≥ 2 is odd and 𝐶/(𝑟 + 1) ≤ 1/2, the magnitude of the

first coefficient satisfies���� cos 𝑟𝜃𝑟 + 𝑖𝐶 cos(𝑟 + 1)𝜃𝑟
𝑟 + 1

���� = ����1 + 𝑖𝐶

𝑟 + 1 sin

𝜋

2𝑟

����
≤
����1 + 𝑖

2

sin

𝜋

6

���� = ����1 + 𝑖

4

���� = √17
4

.

For the magnitude of remainder coefficients, we use the trigono-

metric identity

cos(𝑟 + 2𝑛 ± 1)𝜃𝑟 = cos(𝑟 + 2𝑛)𝜃𝑟 cos𝜃𝑟 ∓ sin(𝑟 + 2𝑛)𝜃𝑟 sin𝜃𝑟 ,

which yields���� cos(𝑟 + 2𝑛)𝜃𝑟 + 𝑖𝐶

𝑟 + 1

(
ℎ− (𝑛, 𝑟 ) cos(𝑟 + 2𝑛)𝜃𝑟 cos𝜃𝑟

− ℎ+ (𝑛, 𝑟 ) sin(𝑟 + 2𝑛)𝜃𝑟 sin𝜃𝑟
)����, (14)
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where ℎ± (𝑛, 𝑟 ) ≔ 𝑟+1
𝑟+2𝑛+1 ±

𝑟+1
𝑟+2𝑛−1 . Since |𝑎 cos𝜃𝑟 + 𝑏 sin𝜃𝑟 | ≤√

𝑎2 + 𝑏2 for 𝑎, 𝑏 ∈ R, (14) becomes(
cos

2 (𝑟 + 2𝑛)𝜃𝑟 +
𝐶2

(𝑟 + 1)2

(
ℎ− (𝑛, 𝑟 ) cos(𝑟 + 2𝑛)𝜃𝑟 cos𝜃𝑟

− ℎ+ (𝑛, 𝑟 ) sin(𝑟 + 2𝑛)𝜃𝑟 sin𝜃𝑟
)
2
)
1/2

≤ max

𝑛,𝑟

(
cos

2 (𝑟 + 2𝑛)𝜃𝑟 +
𝐶2

(𝑟 + 1)2

(
ℎ2− (𝑛, 𝑟 ) cos2 (𝑟 + 2𝑛)𝜃𝑟

+ ℎ2+ (𝑛, 𝑟 ) sin2 (𝑟 + 2𝑛)𝜃𝑟
))

1/2
.

For 𝑛 ≥ 1,

|ℎ+ (𝑛, 𝑟 ) | ≤ 1+1 = 2, |ℎ− (𝑛, 𝑟 ) | =
2(𝑟 + 1)

𝑟2 + 4𝑛𝑟 + 4𝑛2 − 1
≤ 2

𝑟 + 3 ≤
1

2

.

Thus, the magnitude of remainder coefficients is bounded by

max

𝑛,𝑟

√︄(
1 + 1

4
2

)
cos

2 (𝑟 + 2𝑛)𝜃𝑟 + sin2 (𝑟 + 2𝑛)𝜃𝑟

= max

𝑛,𝑟

√︂
1 + 1

4
2
cos

2 (𝑟 + 2𝑛)𝜃𝑟 ≤
√
17

4

.

This implies that

𝜂 (𝑟 )
2

≤
√
17

4

𝐽𝑟 (𝑐𝜋) +
∑︁
𝑛≥1

√
17

4

𝐽𝑟+2𝑛 (𝑐𝜋),

so the ineqaulity (13). We now use the following inequality [32] to

complete the proof:

𝐽𝑛 (2𝑤) ≤
𝑤𝑛

𝑛!
𝑒−

𝑤2

𝑛+1

for a non-negative integer 𝑛 and𝑤 > 0. From (13), we obtain

𝜂 (𝑟 ) ≤
√
17

2

∑︁
𝑛≥0

𝐽𝑟+2𝑛 (𝑐𝜋)

≤
√
17

2

∑︁
𝑛≥0

𝐶𝑟+2𝑛

(𝑟 + 2𝑛)!𝑒
− 𝐶2

𝑟+2𝑛+1

=

√
17

2

𝐶𝑟

𝑟 !
𝑒−

𝐶2

𝑟+1

(
1 + 𝐶2

(𝑟 + 1) (𝑟 + 2) 𝑒
2𝐶2

(𝑟+1) (𝑟+2)

+ 𝐶4

(𝑟 + 1) (𝑟 + 2) (𝑟 + 3) (𝑟 + 4) 𝑒
4𝐶2

(𝑟+1) (𝑟+5) + · · ·
)

≤
√
17

2

𝐶𝑟

𝑟 !
𝑒−

𝐶2

𝑟+1

(
1 + 𝐶2

(𝑟 + 1)2
𝑒

2𝐶2

(𝑟+1)2 + 𝐶4

(𝑟 + 1)4
𝑒

4𝐶2

(𝑟+1)2 + · · ·
)

=

√
17

2

𝐶𝑟

𝑟 !
𝑒−

𝐶2

𝑟+1

(
1 − 𝐶2

(𝑟 + 1)2
𝑒

2𝐶2

(𝑟+1)2
)−1

.

Thus, it follows from 𝐶2/(𝑟 + 1)2 ≤ 1/4 that

𝜂 (𝑟 ) ≤
√
17

2

𝐶𝑟

𝑟 !
𝑒−

𝐶2

𝑟+1

(
1 − 1

4

𝑒
2

4

)−1
=

2

√
17

4 −
√
𝑒

𝐶𝑟

𝑟 !
𝑒−

𝐶2

𝑟+1 ,

hence the proof. □

A.2 Proof of Theorem 3
Proof. Note that (𝑁+𝑝 log𝑝+𝑀)𝑟 is convex and non-decreasing

for each 𝑝, 𝑟 ≥ 1. Therefore, it is sufficient to show that 𝑝 (𝑟 ) is a
convex function with respect to 𝑟 . Indeed, we prove that 𝑝 (𝑟 ) is
logarithmically convex for 𝑟 ≥ 1, from which the convexity follows.

We first show that

𝑟 ↦→ log(𝛼𝜖𝑟 !)−
1

𝑟

is convex. It is easy to check that the function log(𝛼𝜖)−1/𝑟 =

−(log𝛼𝜖)/𝑟 is convex for 𝑟 > 0 since 0 < 𝛼, 𝜖 < 1. We can also

show that log 𝑟 !−1/𝑟 = −(log 𝑟 !)/𝑟 is a convex function considering

its second derivative

𝑑2

𝑑𝑟2

(
− log 𝑟 !

𝑟

)
=
−2 log 𝑟 ! + 2𝑟𝜓 (𝑟 + 1) − 𝑟2𝜓 ′ (𝑟 + 1)

𝑟3
, (15)

where𝜓 (𝑥) = 𝑑
𝑑𝑥

log Γ(𝑥) is the digamma function [1]. The follow-

ing property is often useful:

log𝑥 ≤ 𝜓 (𝑥 + 1) = −𝛾 +
∑︁
𝑘≥1

(
1

𝑘
− 1

𝑥 + 𝑘

)
≤ log(𝑥 + 1), ∀𝑥 > 0,

where 𝛾 is the Euler-Mascheroni constant. We observe that the

numerator of (15) is non-negative on 𝑟 ≥ 0 because it attains its

minimum value 0 at 𝑟 = 0 due to the following inequality:

𝑑

𝑑𝑟
(−2 log 𝑟 ! + 2𝑟𝜓 (𝑟 + 1) − 𝑟2𝜓 ′ (𝑟 + 1))

= −𝑟2𝜓 ′′ (𝑟 + 1) =
∑︁
𝑘≥1

2𝑟2

(𝑟 + 𝑘)3
≥ 0

for all 𝑟 ≥ 0. Since the product of two logarithmically convex func-

tions is also logarithmically convex, we conclude that (𝛼𝜖𝑟 !)−1/𝑟 =

(𝛼𝜖)−1/𝑟 × 𝑟 !−1/𝑟 is logarithmically convex for 𝑟 > 0.

We use the above result to prove that 𝑟 ↦→ (𝛼𝜖𝑟 !)−
1

𝑟 𝑒
− 1

𝑟 (𝑟+1) (𝛼𝜖𝑟 !)
2/𝑟

is a convex function. Let 𝑢 (𝑟 ) ≔ (𝛼𝜖𝑟 !)−1/𝑟 . Our goal is to show

that the following function is convex:

𝑟 ↦→ log𝑢 (𝑟 ) − 1

𝑟 (𝑟 + 1)𝑢 (𝑟 )2
. (16)

A simple calculus shows that

𝑑2

𝑑𝑟2
log𝑢 (𝑟 ) = 2𝑣 (𝑟 ) − 𝑟𝜓 ′ (𝑟 + 1)

𝑟2
,

𝑑2

𝑑𝑟2

1

𝑟 (𝑟 + 1)𝑢 (𝑟 )2
=

(
2(3𝑟2 + 3𝑟 + 1)
𝑟2 (𝑟 + 1)2

+ 2𝜓 ′ (𝑟 + 1)
𝑟

− 4(3𝑟 + 2)
𝑟2 (𝑟 + 1)

𝑣 (𝑟 ) + 4

𝑟2
𝑣 (𝑟 )2

)
1

𝑟 (𝑟 + 1)𝑢 (𝑟 )2
,

where 𝑣 (𝑟 ) ≔ log𝑢 (𝑟 ) +𝜓 (𝑟 +1). Since we have already shown that

𝑑2

𝑑𝑟 2
log𝑢 (𝑟 ) ≥ 0, it is sufficient to consider only when 𝑟 satisfies

𝑑2

𝑑𝑟 2
1

𝑟 (𝑟+1)𝑢 (𝑟 )2 ≥ 0, otherwise the function (16) trivially has a non-

nagative second derivative. For 𝑟 ≥ 1, we have

𝑟 (𝑟 + 1)𝑢 (𝑟 )2 ≥ 1 + log(𝑟 (𝑟 + 1)𝑢 (𝑟 )2)
≥ log((𝑟 + 1)2𝑢 (𝑟 )2)
= 2(log(𝑟 + 1) + log𝑢 (𝑟 ))
≥ 2(𝜓 (𝑟 + 1) + log𝑢 (𝑟 ))
= 2𝑣 (𝑟 ),

 

2338



KDD ’24, August 25–29, 2024, Barcelona, Spain Yong-chan Park, Jongjin Kim, and U Kang

so − 1

𝑟 (𝑟+1)𝑢 (𝑟 )2 ≥ −
1

2𝑣 (𝑟 ) . Also,

𝜓 ′ (𝑟 + 1) =
∑︁
𝑘≥1

1

(𝑟 + 𝑘)2
≤
∫ ∞

𝑟

𝑑𝑥

𝑥2
=

1

𝑟
.

These inequalities imply that

𝑑2

𝑑𝑟2

(
log𝑢 (𝑟 ) − 1

𝑟 (𝑟 + 1)𝑢 (𝑟 )2

)
≥ 2𝑣 (𝑟 ) − 𝑟𝜓 ′ (𝑟 + 1)

𝑟2
−
(
2(3𝑟2 + 3𝑟 + 1)
𝑟2 (𝑟 + 1)2

+ 2𝜓 ′ (𝑟 + 1)
𝑟

− 4(3𝑟 + 2)
𝑟2 (𝑟 + 1)

𝑣 (𝑟 ) + 4

𝑟2
𝑣 (𝑟 )2

)
1

2𝑣 (𝑟 )

≥ 2𝑣 (𝑟 ) − 1
𝑟2

−
(
2(3𝑟2 + 3𝑟 + 1)
𝑟2 (𝑟 + 1)2

+ 2

𝑟2

− 4(3𝑟 + 2)
𝑟2 (𝑟 + 1)

𝑣 (𝑟 ) + 4

𝑟2
𝑣 (𝑟 )2

)
1

2𝑣 (𝑟 )

=
−(4𝑟2 + 5𝑟 + 2) + 𝑣 (𝑟 ) (5𝑟2 + 8𝑟 + 3)

𝑣 (𝑟 )𝑟2 (𝑟 + 1)2
.

Thus, if we show that 𝑣 (𝑟 ) ≥ 4/5, then 𝑣 (𝑟 )𝑟2 (𝑟 + 1)2 > 0, and

− (4𝑟2 + 5𝑟 + 2) + 𝑣 (𝑟 ) (5𝑟2 + 8𝑟 + 3)

≥ −(4𝑟2 + 5𝑟 + 2) + 4

5

(5𝑟2 + 8𝑟 + 3) = 7𝑟 + 2
5

≥ 0,

which proves that (16) is convex. Now, Stirling’s formula [24] im-

plies that

𝑟 ! ≤
√
2𝜋𝑟

(
𝑟

𝑒

)𝑟
𝑒

1

12𝑟

for all 𝑟 ≥ 1. Thus, it follows that

𝑟

(
𝑣 (𝑟 ) − 4

5

)
= 𝑟

(
− 1

𝑟
log(𝛼𝜖𝑟 !) +𝜓 (𝑟 + 1) − 4

5

)
≥ 𝑟

(
− 1

𝑟
log(𝛼𝑟 !) + log 𝑟 − 4

5

)
= − log(𝛼𝑟 !) + 𝑟 log 𝑟 − 4

5

𝑟

≥ − log
(
𝛼
√
2𝜋𝑟

(
𝑟

𝑒

)𝑟
𝑒

1

12𝑟

)
+ 𝑟 log 𝑟 − 4

5

𝑟

= − log𝛼
√
2𝜋𝑟 − 𝑟 log 𝑟 + 𝑟 − 1

12𝑟
+ 𝑟 log 𝑟 − 4

5

𝑟

= − log𝛼
√
2𝜋𝑟 + 1

5

𝑟 − 1

12𝑟

≥ − log𝛼
√
2𝜋𝑟 + 1

5

𝑟 − 1

12

.

Since

𝑑

𝑑𝑟

(
− log𝛼

√
2𝜋𝑟 + 1

5

𝑟 − 1

12

)
= − 1

2𝑟
+ 1

5

,

the function attains its minimum at 𝑟 = 5/2, so

𝑟

(
𝑣 (𝑟 ) − 4

5

)
≥ − log𝛼

√
5𝜋 + 5

12

= 0.294377 · · · ≥ 0,

or 𝑣 (𝑟 ) ≥ 4/5. This completes the proof. □

A.3 Proof of Theorem 8
Proof. Let 𝑣𝑑 = 𝑙𝑑−𝑞𝑑/2 andP𝑑 = P𝑟𝑑 ,𝜉 (𝜖,𝑟𝑑 ) for𝑑 = 1, 2, · · · , 𝐷 ,

and B = B𝝁,𝑴 . Then, it follows that

∥𝒂 − E(𝒂)∥B

≤
∑︁𝑎 (𝒌 )𝒍

(∏
𝑑
𝜔
𝑣𝑑𝑚𝑑

𝑁𝑑
−
∏

𝑑
𝜔
𝑣𝑑 𝜇𝑑
𝑁𝑑
P𝑑 (−2𝑣𝑑 (𝑚𝑑 − 𝜇𝑑 )/𝑁𝑑 )

)
B

=
∑︁
|𝑎 (𝒌 )
𝒍
|
∏

𝑑
𝜔
𝑣𝑑 (𝑚𝑑−𝜇𝑑 )
𝑁𝑑

−
∏

𝑑
P𝑑 (−2𝑣𝑑 (𝑚𝑑 − 𝜇𝑑 )/𝑁𝑑 )


B
,

where the summations are over indices 𝒌 ∈ ∏
𝑑 [𝑝𝑑 ] and 𝒍 ∈∏

𝑑 [𝑟𝑑 ]. Since 𝑙𝑑 ranges from 0 to 𝑞𝑑 − 1, we have |2𝑣𝑑/𝑁𝑑 | ≤
2(𝑞𝑑/2)/𝑁𝑑 = 1/𝑝𝑑 , and therefore𝑀𝑑 |2𝑣𝑑/𝑁𝑑 | ≤ 𝑀𝑑/𝑝𝑑 ≤ 𝜉 (𝜖, 𝑟𝑑 ).
We replace −2𝑣𝑑 (𝑥𝑑 − 𝜇𝑑 )/𝑁𝑑 with 𝑥 ′

𝑑
:

∥𝒂 − E(𝒂)∥B

≤
∑︁
|𝑎 (𝒌 )
𝒍
|
∏

𝑑
𝑒𝜋𝑖𝑥

′
𝑑 −

∏
𝑑
P𝑑 (𝑥 ′𝑑 )


|𝑥 ′

𝑑
| ≤𝑀𝑑 |2𝑣𝑑/𝑁𝑑 |, ∀𝑑

≤
∑︁
|𝑎 (𝒌 )
𝒍
|
∏

𝑑
𝑒𝜋𝑖𝑥

′
𝑑 −

∏
𝑑
P𝑑 (𝑥 ′𝑑 )


|𝑥 ′

𝑑
| ≤𝜉 (𝜖,𝑟𝑑 ), ∀𝑑

.

Now∏
𝑑

𝑒𝜋𝑖𝑥
′
𝑑 −

∏
𝑑

P𝑑 (𝑥 ′𝑑 ) =
( ∏
𝑑<𝐷

𝑒𝜋𝑖𝑥
′
𝑑

)
(𝑒𝜋𝑖𝑥

′
𝐷 − P𝐷 (𝑥 ′𝐷 ))

+
( ∏
𝑑<𝐷

𝑒𝜋𝑖𝑥
′
𝑑 −

∏
𝑑<𝐷

P𝑑 (𝑥 ′𝑑 )
)
P𝐷 (𝑥 ′𝐷 ) .

Using the above equation recursively, we obtain∏
𝑑

𝑒𝜋𝑖𝑥
′
𝑑 −

∏
𝑑

P𝑑 (𝑥 ′𝑑 )

=

𝐷∑︁
𝑠=1

(∏
𝑑<𝑠

𝑒𝜋𝑖𝑥
′
𝑑

)
(𝑒𝜋𝑖𝑥

′
𝑠 − P𝑠 (𝑥 ′𝑠 ))

(∏
𝑠<𝑑

P𝑑 (𝑥 ′𝑑 )
)
.

Because |𝑥 ′
𝑑
| ≤ 𝜉 (𝜖, 𝑟𝑑 ) for all 𝑑 , we have the following inequality:����∏

𝑑

𝑒𝜋𝑖𝑥
′
𝑑 −

∏
𝑑

P𝑑 (𝑥 ′𝑑 )
����

≤
𝐷∑︁
𝑠=1

����∏
𝑑<𝑠

𝑒𝜋𝑖𝑥
′
𝑑

���� · |𝑒𝜋𝑖𝑥 ′𝑠 − P𝑠 (𝑥 ′𝑠 ) | · ����∏
𝑠<𝑑

P𝑑 (𝑥 ′𝑑 )
����

≤
𝐷∑︁
𝑠=1

1
𝑠−1 · 𝜖 · (𝜖 + 1)𝐷−𝑠 = (𝜖 + 1)𝐷 − 1,

where the second inequality holds since |𝑒𝜋𝑖𝑥
′
𝑑 | = 1 and |P𝑑 (𝑥 ′𝑑 ) | ≤

|P𝑑 (𝑥 ′𝑑 )−𝑒
𝜋𝑖𝑥 ′

𝑑 |+ |𝑒𝜋𝑖𝑥
′
𝑑 | ≤ 𝜖+1. We may assume that the tolerance

is sufficiently small so that 𝜖 < 2/𝐷2
. Then it is easy to see that

(𝜖 + 1)𝐷 − 1 =
𝐷∑︁
𝑑=0

(
𝐷

𝑑

)
𝜖𝑑 − 1 = 𝐷𝜖 +

𝐷∑︁
𝑑=2

(
𝐷

𝑑

)
𝜖𝑑

≤ 𝐷𝜖 +
𝐷∑︁
𝑑=2

(
𝐷2

2

)𝑑−1
𝜖𝑑

≤ 𝐷𝜖 +
𝐷∑︁
𝑑=2

(
1

𝜖

)𝑑−1
𝜖𝑑 = 𝐷𝜖 +

𝐷∑︁
𝑑=2

𝜖 = (2𝐷 − 1)𝜖.

Thus, we obtain the desired approximation bound of Auto-MPFT:

∥𝒂 − E(𝒂)∥B ≤
∑ |𝑎 (𝒌 )

𝒍
| · (2𝐷 − 1)𝜖 = ∥𝒂∥1 · (2𝐷 − 1)𝜖. □
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