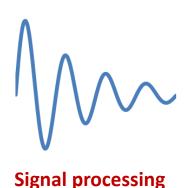


Fast Multidimensional Partial Fourier Transform with Automatic Hyperparameter Selection

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

- Fundamental tool for numerous applications
 - Signal / image processing
 - Data compression (e.g., mp3 and jpeg)
 - Medical imaging (e.g., MRI)
 - Anomaly detection

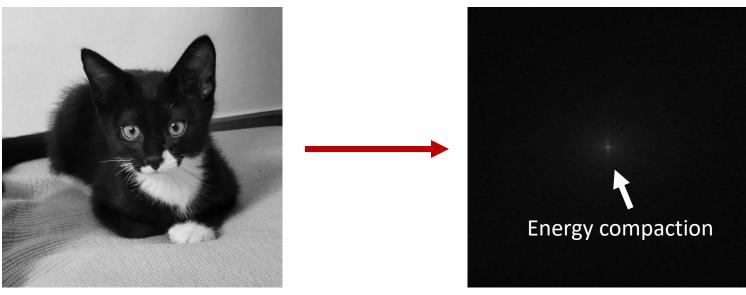


Data compression

Medical imaging

Anomaly detection

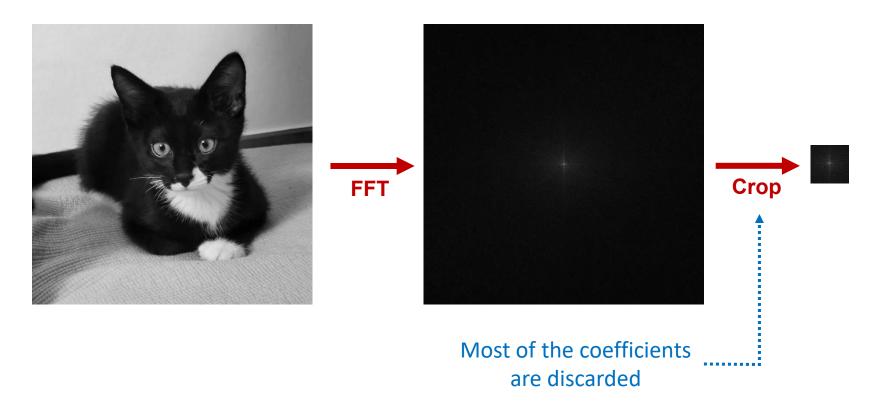
- Energy compaction in the frequency domain
 - Fourier coefficients are mostly small or equal to zero



Spatial domain

Frequency domain

- Fast Fourier Transform (FFT) is inefficient
 - Because FFT computes all the coefficients

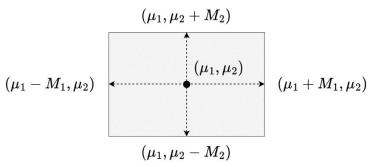


 How can we optimize the computation process for a part of Fourier coefficients?

How can we do this directly?

- Multidimensional Partial Fourier Transform
 - Given
 - *D*-dimensional array $x \in \mathbb{C}^{N_1 \times \cdots \times N_D}$
 - Center of box $\mu = (\mu_1, \dots, \mu_D) \in \mathbb{Z}^D$
 - Radius of box $\mathbf{M} = (M_1, \dots, M_D) \in \mathbb{Z}^D$
 - Estimate
 - Fourier coefficients of x for D-dimensional box

$$\Pi_{d=1}^{D}[\mu_{d}-M_{d},\mu_{d}+M_{d}]$$



Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

FFT

- Fast Fourier Transform (FFT) rapidly computes the full Fourier coefficients
 - FFT has been highly optimized over decades
 - Time complexity: $O(N \log N)$ (N: input size)

- No option to efficiently compute only a few coefficients
- Unnecessary coefficients are just discarded

- Goertzel algorithm is one of the first methods for computing partial Fourier coefficients
 - Time complexity: O(MN) (N, M: input / output sizes)

- Essentially the same as computing individual coefficients
- It is limited to rare scenarios where a very few number of coefficients are required

- Subband DFT decomposes the input into a set of subsequences, and removes some of them with small energy contribution
 - Time complexity: $O(N + M \log N)$ (N, M: input / output sizes)

- Substantial issue of low accuracy
- No option to set an error bound

- FFT Pruning is a modification of the standard split-radix FFT
 - Almost optimized because it uses FFT as a subroutine
 - Time complexity: $O(N \log M)$ (N, M: input / output sizes)

Limitation

The performance gains are rather modest in practice

Partial Fourier Transform (PFT)

- Current state-of-the-art algorithm
- Time complexity: $O(N + M \log M)$ (N, M: input / output sizes)

- Only works for 1-dimensional inputs
- Requires manual hyperparameter tuning

Outline

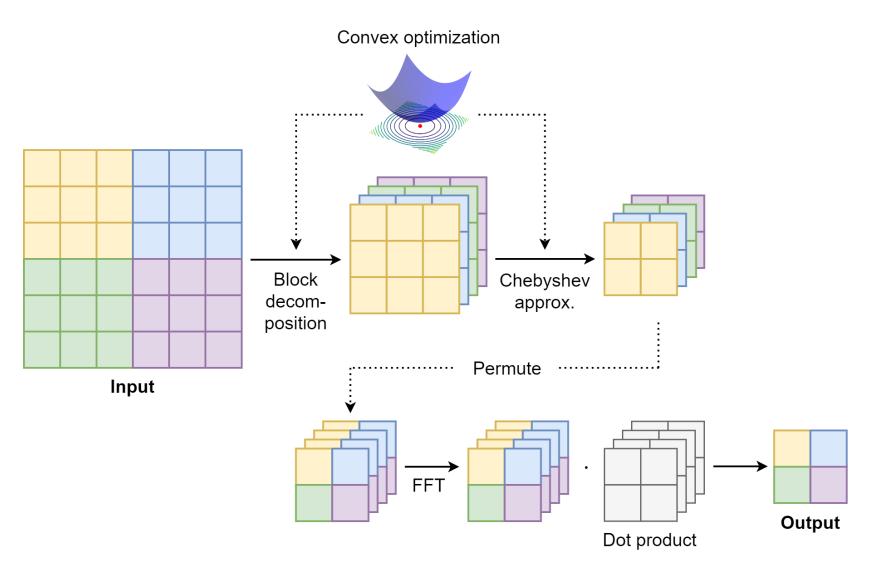
- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

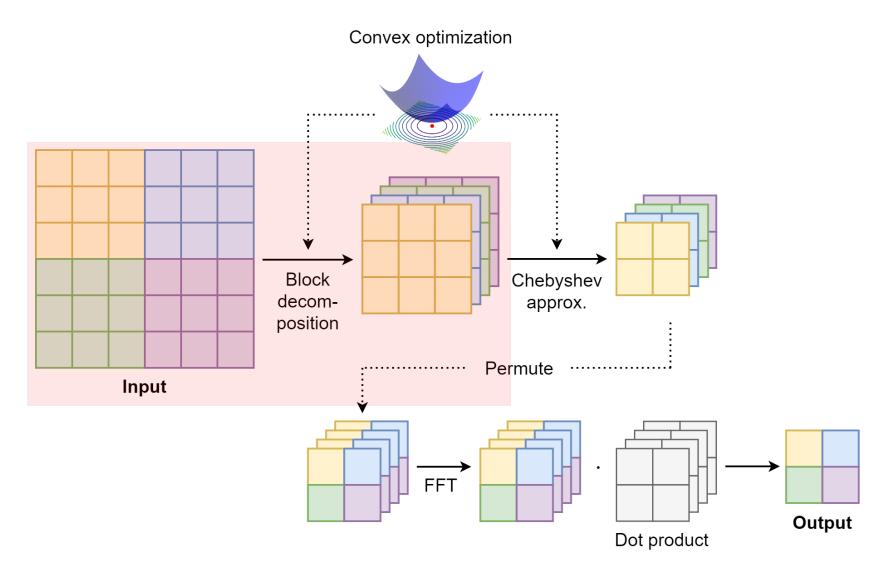
Challenges

- C1. Multidimensional partial Fourier transform
 - How can we efficiently compute partial Fourier coefficients in multidimensional DFT?
- C2. Automatic hyperparameter selection
 - How can we automatically find the optimal hyperparameter of Auto-MPFT?

Auto-MPFT

- Automatic Multidimensional Partial Fourier Transform
- (1) Multidimensional Partial Fourier Transform
 - (1.1) Block decomposition
 - (1.2) Chebyshev approximation
 - (1.3) Batch FFT & dot product
- (2) Automatic Hyperparameter Selection
 - (2.1) Finding time complexity
 - (2.2) Error approximation
 - (2.3) Fixed-point iteration
 - (2.4) Unconstrained convex optimization

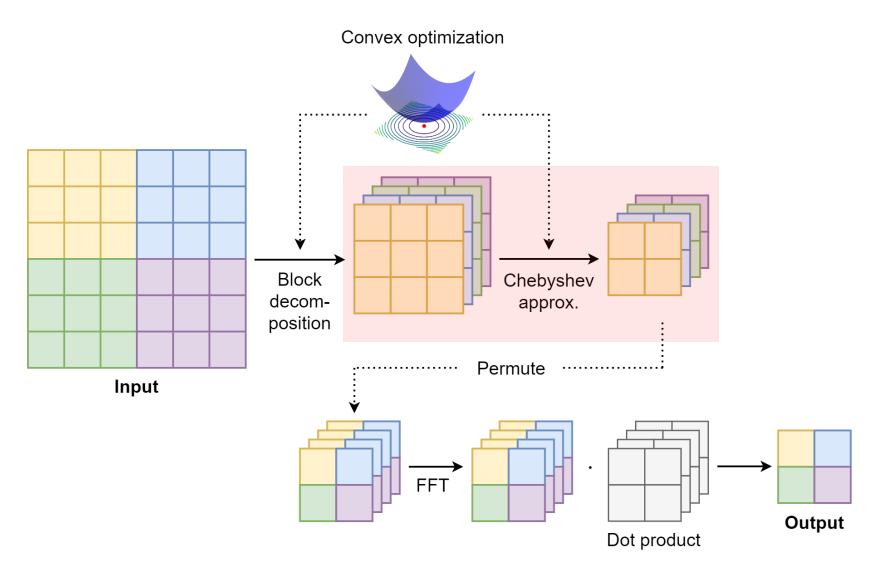




- (1) Multidimensional Partial Fourier Transform
 - (1.1) Block decomposition
 - Goal: Find a set of smooth trigonometric factors

$$\begin{split} \hat{x}_{m} &= \sum_{\boldsymbol{n} \in \Pi_{d}[N_{d}]} x_{\boldsymbol{n}} \prod_{d} \omega_{N_{d}}^{m_{d} n_{d}} \\ &= \sum_{\boldsymbol{k} \in \Pi_{d}[p_{d}], \boldsymbol{l} \in \Pi_{d}[q_{d}]} x_{\boldsymbol{q} \odot \boldsymbol{k} + \boldsymbol{l}} \prod_{d} \omega_{N_{d}}^{m_{d} (l_{d} - q_{d}/2)} \omega_{p_{d}}^{m_{d} k_{d}} \omega_{2p_{d}}^{m_{d}} \end{split}$$

```
d=1,2,\cdots,D: dimension (x_n)\in\mathbb{C}^{N_1	imes\cdots	imes N_D}:D-dimensional array (\widehat{x}_m)\in\mathbb{C}^{N_1	imes\cdots	imes N_D}: Fourier coefficient of x \omega_{\nu}\coloneqq e^{-2\pi i/\nu}:\nu-th primitive root of unity [\nu]\coloneqq\{0,1,\cdots,\nu-1\} m{p}=(p_1,\cdots,p_D), m{q}=(q_1,\cdots,q_D)\in\mathbb{Z}^D such that N_d=p_dq_d \odot: element-wise product
```

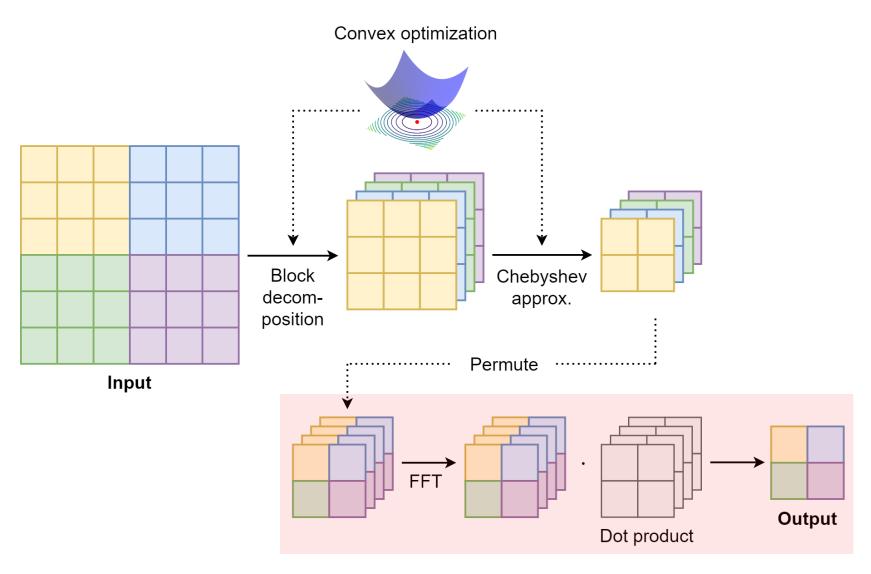



- (1) Multidimensional Partial Fourier Transform
 - (1.2) Chebyshev approximation
 - Goal: Enable pre-computation of the trigonometric factors

$$\hat{x}_{m} = \sum_{k,l} x_{q \odot k+l} \prod_{d} \omega_{N_{d}}^{m_{d}(l_{d}-q_{d}/2)} \omega_{p_{d}}^{m_{d}k_{d}} \omega_{2p_{d}}^{m_{d}}$$

$$\approx \sum_{j,k,l} x_{q \odot k+l} \prod_{d} b_{j_{d}l_{d}}^{(d)} \left((m_{d} - \mu_{d})/p_{d} \right)^{j_{d}} \omega_{p_{d}}^{m_{d}k_{d}} \omega_{2p_{d}}^{m_{d}}$$

$$\begin{split} & \boldsymbol{j} \in \prod_{d} [r_d], \boldsymbol{k} \in \prod_{d} [p_d], \boldsymbol{l} \in \prod_{d} [q_d] \\ & b_{j_d l_d}^{(d)} \coloneqq \omega_{N_d}^{\mu_d \left(l_d - \frac{q_d}{2}\right)} w_{\epsilon, r_d, j_d} \left(1 - \frac{2l_d}{q_d}\right)^{j_d} \in \mathbb{C}^{r_d \times q_d} \\ & \mathcal{P}_{\alpha, \xi} \colon \text{Chebyshev approximation to } e^{\pi i x} \text{ of degree less than } \alpha \text{ with restriction } |x| \leq |\xi| \\ & \xi(\epsilon, r) \coloneqq \sup\{\xi \geq 0 \colon \left\|\mathcal{P}_{r, \xi}(x) - e^{\pi i x}\right\|_{|x| \leq |\xi|} \leq \epsilon\} \ (\epsilon \colon \text{tolerance}) \\ & r_d \colon \text{number of approximating terms for } d\text{-th axis such that } \xi(\epsilon, r_d) \geq M_d/p_d \\ & w_{\epsilon, r_d, j_d} \colon j_d\text{-th coefficient of Chebyshev polynomial } \mathcal{P}_{r_d, \xi(\epsilon, r_d)} \end{split}$$



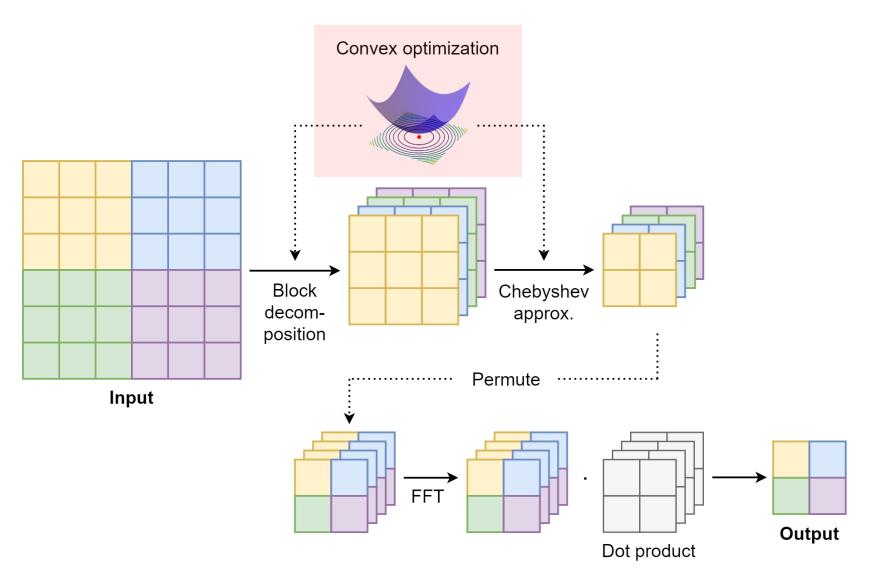
- (1) Multidimensional Partial Fourier Transform
 - (1.3) Batch FFT & dot product
 - Goal: Efficient computation

$$\hat{x}_{m} \approx \sum_{j,k,l} x_{q \odot k+l} \prod_{d} b_{j_{d}l_{d}}^{(d)} ((m_{d} - \mu_{d})/p_{d})^{j_{d}} \omega_{p_{d}}^{m_{d}k_{d}} \omega_{2p_{d}}^{m_{d}}$$

$$= \sum_{j,k} c_{j}^{(k)} \prod_{d} ((m_{d} - \mu_{d})/p_{d})^{j_{d}} \omega_{p_{d}}^{m_{d}k_{d}} \omega_{2p_{d}}^{m_{d}}$$

$$= \sum_{j} \hat{c}_{m}^{(j)} \prod_{d} ((m_{d} - \mu_{d})/p_{d})^{j_{d}} \omega_{2p_{d}}^{m_{d}}$$

$$\begin{split} & \boldsymbol{j} \in \prod_{d} [r_d], \boldsymbol{k} \in \prod_{d} [p_d], \boldsymbol{l} \in \prod_{d} [q_d] \\ & c_{\boldsymbol{j}}^{(\boldsymbol{k})} \coloneqq \sum_{\boldsymbol{l}} x_{\boldsymbol{q} \odot \boldsymbol{k} + \boldsymbol{l}} \prod_{d} b_{j_d l_d}^{(d)} \\ & \hat{c}_{\boldsymbol{m}}^{(\boldsymbol{j})} \colon D\text{-dimensional discrete Fourier coefficient of } c_{\boldsymbol{j}}^{(\boldsymbol{k})} \text{ with respect to } \boldsymbol{k} \end{split}$$



- (2) Automatic Hyperparameter Selection
 - (2.1) Finding time complexity
 - Goal: Build an optimization problem for selecting the hyperparameter

Problem 1. Given
$$N, M \in \mathbb{N}$$
, and $\epsilon > 0$,
$$\underset{p,r>0}{\operatorname{argmin}} \quad (N + p \log p + M)r$$

$$s.t. \quad \xi(\epsilon, r) \geq M/p$$

- The objective function is the time complexity of Auto-MPFT
- However, there is no closed form for the ξ function, making it difficult to apply optimization techniques

- (2) Automatic Hyperparameter Selection
 - (2.2) Error approximation
 - Goal: Approximate the constraint function to closed form

LEMMA 2. If $r \geq 2$, the approximation error function $\eta(r)$ satisfies

$$\eta(r) \le U(r) := \frac{2\sqrt{17}}{4 - \sqrt{e}} \frac{C^r}{r!} e^{-\frac{C^2}{r+1}} \quad (C = c\pi/2).$$

 $\eta(r)$: maximum error of the Chebyshev approximation to $e^{\pi i x}$ on $|x| \le c \coloneqq \xi(\epsilon, r^*)$ of degree less than r $r^* \coloneqq \min\{r \in \mathbb{N}: \xi(\epsilon, r) \ge M/p\}$

- If we solve $U(r) = \epsilon$, then $\eta(r) \le U(r) = \epsilon = \eta(r^*)$, thus $r^* \sim |r|$.
- Unfortunately, $U(r) = \epsilon$ does not have an algebraic solution

(2) Automatic Hyperparameter Selection

- (2.3) Fixed-point iteration
 - Goal: Estimate a numerical solution of $U(r) = \epsilon$
 - Define $f(x) \coloneqq (\alpha \epsilon r!)^{\frac{1}{r}} e^{\frac{x^2}{r(r+1)}}$, where $\alpha = \frac{4-\sqrt{e}}{2\sqrt{17}}$
 - Then, the equation $U(r) = \epsilon$ becomes computing a fixed point of f
 - Because f is a contraction mapping, the fixed-point iteration converges to the unique fixed point by the Banach fixed-point theorem
 - This leads to an approximate relation between the parameters p and r

$$p(r) \coloneqq \frac{\pi M}{2} (\alpha \epsilon r!)^{-\frac{1}{r}} e^{-\frac{1}{r(r+1)}} (\alpha \epsilon r!)^{2/r}, \quad \alpha = \frac{4 - \sqrt{e}}{2\sqrt{17}}.$$

- (2) Automatic Hyperparameter Selection
 - (2.4) Unconstrained convex optimization
 - Goal: Convert the original problem into a well-established task

Problem 2. Given
$$N, M \in \mathbb{N}$$
, and $\epsilon > 0$,
$$\underset{r \geq 1}{\operatorname{argmin}} \ (N + p(r) \log p(r) + M)r$$

Theorem 3. The objective function $r \mapsto (N + p(r) \log p(r) + M)r$ of Problem 2 is convex for $r \ge 1$.

 The convexity of the objective function guarantees the convergence of second-order optimization techniques such as Newton's method

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

Q1. Running time

 How rapidly does Auto-MPFT compute a part of Fourier coefficients compared to baselines without compromising accuracy?

Q2. Automatic hyperparameter selection

 How accurately and quickly does the optimization-based algorithm find the optimal hyperparameter of Auto-MPFT?

Q3. Impact of varying precision

 What impact does varying precision settings have on the running time of Auto-MPFT?

Dataset

We use both synthetic and real-world datasets

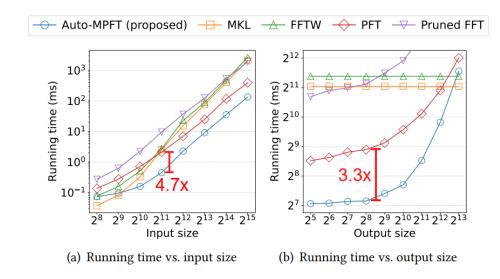
Dataset	Type	# of Images	Size
$\{S_n\}_{n=8}^{15}$	Synthetic	1K	$2^n \times 2^n$
Cityscapes	Real-world	5K	2048×1024
ADE20K	Real-world	20K	2048×2048
DF2K	Real-world	3K	2040×1536
RiceLeaf	Real-world	3.3K	3120×3120
Bird	Real-world	306	6000×4000

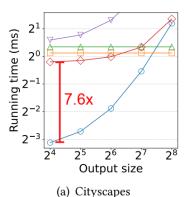
Measure

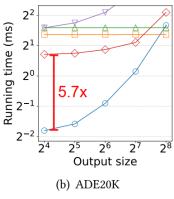
• We use single-precision floating-point format, and set the relative ℓ_2 error to be less than 10^{-6}

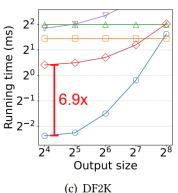
Q1. Running time

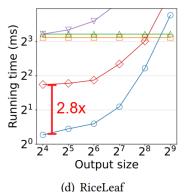
 Auto-MPFT exhibits superior performance across all datasets without compromising accuracy

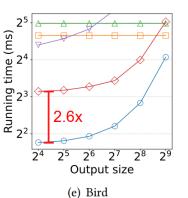












Q2. Automatic hyperparameter selection

Accuracy

 Auto-MPFT successfully detects the optimal value in most scenarios, with minor errors occurring infrequently

Output		Input size						
size	$2^{8\times2}$	2 ^{9×2}	$2^{10 \times 2}$	$2^{11\times2}$	$2^{12\times2}$	$2^{13\times 2}$	$2^{14 \times 2}$	$2^{15\times2}$
$-2^{6} \times 2^{6}$	2^4	2 ⁵	2 ⁵	2^{6}	2^{6}	2 ⁷	2 ⁸ (2 ⁷)	29(28)
$2^{7} \times 2^{7}$	2^{5}	2^5	2^6	2^6	2^7	2^7	$2^{8}(2^{7})$	29
$2^{8} \times 2^{8}$	-	2^{6}	2^{6}	2^{6}	2^7	2^8	28	2^{9}
$2^{9} \times 2^{9}$	-	-	2^7	2^7	2^7	2^8	2^{9}	2^{9}
$2^{10} \times 2^{10}$	-	-	-	$2^{7}(2^{8})$	2^{8}	2^{8}	2^{9}	2^{9}
$2^{11} \times 2^{11}$	-	-	-	-	$2^8(2^9)$	2^{9}	2^{9}	2^{10}
$2^{12} \times 2^{12}$	-	-	-	-	-	$2^9(2^{10})$	2^{10}	2^{10}
$2^{13} \times 2^{13}$	-	-	-	-	-	-	$2^{10}(2^{11})$	2^{11}

Speed

 Auto-MPFT significantly outperforms the manual search process

$2^n \times 2^n$	Auto-MPFT	Manual-best	Manual-worst
$2^{9} \times 2^{9}$	3.596	63.30	860.9
$2^{10} \times 2^{10}$	3.431	70.39	1273.3
$2^{11} \times 2^{11}$	2.829	85.94	2083.7
$2^{12} \times 2^{12}$	2.225	60.13	3638.6
$2^{13} \times 2^{13}$	1.653	79.34	6707.4
$2^{14} \times 2^{14}$	1.626	116.27	12508.7
$2^{15} \times 2^{15}$	2.971	124.26	24113.0

Q3. Impact of varying precision

 Auto-MPFT can set an arbitrary numerical precision, offering a beneficial trade-off, particularly when prioritizing fast evaluations

$$(N = 2^{15} \times 2^{15})$$

Output		Precision	l
size	10^{-6}	10^{-4}	10^{-2}
$2^5 \times 2^5$	133.7	131.0 (2.0%)	126.7 (5.2%)
$2^6 \times 2^6$	135.1	132.3 (2.0%)	127.6 (5.6%)
$2^{7} \times 2^{7}$	140.8	138.3 (1.8%)	133.5 (5.2%)
$2^{8} \times 2^{8}$	142.3	139.6 (1.9%)	135.1 (5.1%)
$2^9 \times 2^9$	169.5	161.3 (4.9%)	148.1 (12.6%)
$2^{10} \times 2^{10}$	208.3	188.1 (9.7%)	158.8 (23.8%)
$2^{11} \times 2^{11}$	369.1	290.9 (21.2%)	201.1 (45.5%)
$2^{12} \times 2^{12}$	905.9	732.5 (19.1%)	463.0 (48.9%)
$2^{13} \times 2^{13}$	3012.5	2465.8 (18.1%)	1510.9 (49.8%)

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

Auto-MPFT

Efficiently computes a part of Fourier coefficients

Main ideas

- Use block decomposition and Chebyshev approximation, significantly reducing the computational cost
- Propose a convex optimization-based algorithm for automatically selecting the optimal hyperparameter

Experimental result

Auto-MPFT shows the state-of-the-art performance

Thank you!

