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Abstract

How can we accurately and efficiently decompose a tensor stream? Tensor decomposition

is a crucial task in a wide range of applications and plays a significant role in latent feature

extraction and estimation of unobserved entries of data. The problem of efficiently decom-

posing tensor streams has been of great interest because many real-world data dynamically

change over time. However, existing methods for dynamic tensor decomposition sacrifice

the accuracy too much, which limits their usages in practice. Moreover, the accuracy loss

becomes even more serious when the tensor stream has an inconsistent temporal pattern

since the current methods cannot adapt quickly to a sudden change in data. In this paper,

we propose DAO-CP, an accurate and efficient online CP decomposition method which

adapts to data changes. DAO-CP tracks local error norms of the tensor streams, detecting a

change point of the error norms. It then chooses the best strategy depending on the degree

of changes to balance the trade-off between speed and accuracy. Specifically, DAO-CP

decides whether to (1) reuse the previous factor matrices for the fast running time or (2) dis-

card them and restart the decomposition to increase the accuracy. Experimental results

show that DAO-CP achieves the state-of-the-art accuracy without noticeable loss of speed

compared to existing methods.

Introduction

Given a tensor stream, how can we decompose it accurately and efficiently? A multi-dimensional

array or tensor has been a fundamental component for numerous applications including signal

processing [1–3], computer vision [4–6], graph analysis [7, 8], and statistics [9]. Tensor

decomposition is a generalization of the matrix decomposition, and plays an important role in

latent feature discovery and estimation of unobservable entries [10–12].

A tensor is called dynamic if its size and value change over time (for example, time-evolving

network traffic data, social networks, and so on), or static otherwise [13]. Analysis of dynamic

tensors with tensor decomposition is a crucial task. However, the methods devised for static

tensor decomposition cannot be easily applied for dynamic tensor analysis since such static

methods perform many iterations of computation until convergence at every time step, which

leads to prohibitively large time cost.
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On the other hand, dynamic tensor decomposition methods aim to incrementally and

quickly analyze tensors; however, the accuracy of existing methods is not satisfactory. Indeed,

current dynamic methods (1) bypass the factor update for temporal mode to improve the

speed [14], or (2) decompose the current tensor slice using prior factor matrices [15, 16].

Unfortunately, these methods suffer from poor accuracy when the tensor stream has an incon-

sistent temporal pattern because they cannot adapt quickly to abrupt changes in data [17, 18].

In this paper, we propose Data-Adaptive Online CP decomposition (DAO-CP), an accurate

and efficient tensor stream decomposition algorithm which adapts to data changes. The main

ideas of DAO-CP are to (1) detect change points of “themes” in a tensor stream by tracking

local error norms, and (2) re-decompose the tensor stream whenever a new theme is discov-

ered. DAO-CP automatically decides whether to reuse the previous results of decomposition

or to discard them depending on how much changes are detected in the tensor stream. Conse-

quently, it provides much more accurate and fast decomposition for real-world datasets even

with inconsistent temporal patterns. Furthermore, we introduce complementary matrices in

order to reduce the redundant computations in CP-ALS optimization. We also simplify the

estimation loss function from DTD [15] by fixing the non-temporal modes. As a result,

DAO-CP achieves lower time complexity than the existing methods without accuracy loss.

Through experiments, we show that DAO-CP outperforms the current state-of-the-art algo-

rithms in terms of accuracy with little sacrifice in running time. We also investigate the sensi-

tivity and the effect of hyperparameters of our proposed method.

The main contributions are summarized as follows:

• Method. We propose DAO-CP, an accurate and efficient online method for tensor stream

decomposition.

• Analysis. We theoretically analyze the computational complexity of DAO-CP and compare

it to existing methods.

• Experiments. DAO-CP shows the state-of-the-art accuracy on both synthetic and real-

world datasets without significant loss of speed (see Fig 1).

Fig 1. Accuracy comparison between DAO-CP (proposed) and its competitors on Airport Hall (upper) and Sample Video (lower) datasets.

DAO-CP automatically detects a change of theme (for example, an object starts moving or a scene changes) and re-decomposes the data depending on

the degree of changes. Note that DAO-CP results in much more clear images than the competitors with little sacrifice in speed.

https://doi.org/10.1371/journal.pone.0267091.g001
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The code and datasets are available at https://github.com/snudatalab/DAO-CP. The rest of

this paper is organized as follows. We first demonstrate preliminaries of tensor decomposition

algorithms. We then present our proposed method in detail. After showing experimental

results, we discuss related works, and conclude the paper.

Preliminaries

We describe preliminaries of tensors and tensor decomposition algorithms. Table 1 summa-

rizes the symbols used in this paper.

Tensors

Tensors are multi-dimensional arrays that generalize vectors (1-order tensors) and matrices

(2-order tensors) to higher orders. We denote vectors with bold lowercase letters (a), matrices

with bold capital letters (A), and tensors with bold calligraphic letters (X). An N-th order ten-

sor X has N modes whose lengths are I1, � � �, IN, respectively. A tensor can be unfolded or

matricized along any of its modes [19], and the unfolded matrix of X along the n-th mode is

denoted by X(n). When a tensor is unfolded, its elements are reordered into a matrix form; the

mode-n unfolding matrix XðnÞ 2 R
In�
Q

i6¼n
Ii of a tensor X 2 RI1�����IN maps the (i1, � � �, iN)-th

element of X to the (in, j)-th element of X(n), where

j ¼ 1þ
X

1�k�N; k6¼n

ðik � 1Þ
Y

1�m�k� 1; m6¼n

Im

" #

: ð1Þ

We define the Frobenius norm of a tensor using the notation k�k as follows:

kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

1�ik�Ik;8k¼1;���;N

ðX ði1 ;���;iN Þ
Þ

2
r

: ð2Þ

Table 1. Table of symbols.

Notation Definition

A matrix

A> transpose of A

A† pseudoinverse of A

In length of the n-th mode of tensor

R rank of tensor

X 2 RI1�����IN N-th order tensor

An 2 R
In�R factor matrix for n-th mode of tensor

kXk Frobenius norm of X

XðnÞ 2 R
In�
Q

i6¼n
Ii mode-n unfolding matrix of X

〚�〛 Kruskal operator, e.g. X �〚A1; � � � ;AN〛
� Kronecker product

� Khatri-Rao product

⊛ element-wise product (Hadamard product)

⊘ element-wise division

https://doi.org/10.1371/journal.pone.0267091.t001
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In what follows, we briefly define several important matrix products. The Kronecker product A

� B of matrices A 2 RI�J
and B 2 RK�L

is a matrix of size IK × JL and defined as follows:

A� B ¼

a11B a12B � � � a1JB

a21B a22B � � � a2JB

..

. ..
. . .

. ..
.

aI1B aI2B � � � aIJB

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

The Hadamard product A⊛ B and Khatri-Rao product A� B are two essential matrix prod-

ucts used in tensor decomposition. The Hadamard product is simply the element-wise product

of two matrices A and B of the same size. The Khatri-Rao product is a column-wise Kronecker

product:

A� B ¼ ½a1 � b1; � � � ; aJ � bJ � 2 R
IAIB�J

; ð3Þ

where {an} and {bn} denote the column vectors of A 2 RIA�J
and B 2 RIB�J

, respectively.

Tensor decomposition

CANDECOMP/PARAFAC (CP) decomposition is one of the most widely used methods for

tensor decomposition, which is considered to be a key building block in many other variants

[1, 20]. CP decomposition factorizes a tensor into a sum of rank-one tensors:

XR

r¼1

aðrÞ1 � � � � � a
ðrÞ
N ; ð4Þ

where the number R of rank-one tensor sets is called the rank of the resulting tensor. The fac-
tor matrices {A1, � � �, AN} refer to the combination of the vectors from the rank-one compo-

nents, i.e.,

f að1Þ1 ; � � � ; a
ðRÞ
1

� �
; � � � ; að1ÞN ; � � � ; a

ðRÞ
N �g:

�
ð5Þ

We express the CP decomposition result of a tensor X using Kruskal operator〚�〛 and the

unfolding matrix, where the Kruskal operator provides a shorthand notation for the sum of

outer products of the columns in factor matrices [21]:

X �〚A1; � � � ;AN〛;

XðnÞ � Anð
J

k6¼nAkÞ
>
:

Then, CP decomposition aims to find the factor matrices that minimize the estimation error L
defined as follows:

LðA1; � � � ;ANÞ ¼ kX � 〚A1; � � � ;AN〛k
2
¼ kXðnÞ � Anð

J
k6¼nAkÞ

>
k

2
: ð6Þ

CP alternating least squares (CP–ALS) has been extensively used for this optimization prob-

lem. The main idea of ALS is to divide the original problem into N sub-problems, where each

sub-problem corresponds to updating one factor matrix while keeping all the others fixed [20]:

An  arg min
An

kXðnÞ � Anð
K

k6¼n
AkÞ

>
k

2

¼ XðnÞ½ð
J

k6¼nAkÞ
>
�
y
¼ XðnÞð

J
k6¼nAkÞð⊛k6¼nA

>

k AkÞ
y
:

ð7Þ
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Online tensor decomposition

Of particular interest in the problem of tensor decomposition is an efficient online algorithm

for time-evolving tensors. We think of a tensor as a set of “slices” given at each time step.

Given an N-order time-evolving tensor X 2 RI1�����IN , we expand it as a form of ½X old
;X new

�
T
,

where X old
2 RIold

1
�����IN is the previous tensor data and X new

2 RInew
1
�����IN is a new tensor slice

for one time step. Then, the goal is to efficiently decompose the tensor X given the previous

decomposition result X old
�〚~A1; � � � ;

~AN〛:

X ¼
X old

Xnew

2

4

3

5 �

"""
Að0Þ

1

Að1Þ
1

#

;A2; � � � ;AN

##

; ð8Þ

where Að0Þ
1
2 RIold

1
�R and Að1Þ

1
2 RInew

1
�R. This is done by minimizing the estimation error L

defined as follows:

L ¼
1

2
X old
�

��

Að0Þ
1
; � � � ;AN

����
�
�
�

2

þ
1

2

�
�
�
�
�
X new

�

��

Að1Þ
1
; � � � ;AN

����
�
�
�

2

:

�
�
�
�
�

ð9Þ

Related works

Tensor stream decomposition is widely studied under CP decomposition [22, 23]. Existing

works employ one of the following two ideas: they update (1) only the non-temporal factors

with precomputed auxiliary matrices [14], or (2) whole factors considering prior decomposi-

tion results [15, 16]. We describe three main approaches (OnlineCP, SeekAndDestroy, and

DTD) for dynamic tensor decomposition, and compare them with our proposed method.

OnlineCP

OnlineCP [14] preserves the previous temporal factor to efficiently decompose new tensor

slices. After updates of non-temporal factors and the partial temporal factor, it simply appends

a part of the temporal factor matrix to the previous matrix. OnlineCP avoids duplicated com-

putations such as Khatri-Rao and Hadamard products by introducing auxiliary matrices. It

computes complementary matrices before ALS iteration and yields a new decomposition.

Despite its low computational cost, the approach cannot achieve an accurate decomposition

due to the lack of consideration on the change of themes in data (see Fig 2). Note that

DAO-CP solves this problem by tracking local error norms of the tensor stream and detecting

a change point of themes, which enables an accurate decomposition even when the data have

an inconsistent temporal pattern.

SeekAndDestroy

SeekAndDestroy [16] additionally uses rank estimation to discover latent concepts and detect

concept drift in streaming tensors. The method estimates the rank of each incoming tensor

slice, and updates the previous decomposition after alleviating concept drift. However, See-

kAndDestroy requires extra computation due to the rank estimation for every time step,

which causes a substantial loss of speed. Moreover, it consistently performs worse than Onli-

neCP when the initial rank of OnlineCP is fine-tuned. Note that our proposed method effi-

ciently detects the change of theme in streaming data because it does not require estimating
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the actual rank numbers, but only tracks local error in order to rapidly capture the change

points.

DTD

DTD [15] was originally introduced as a part of MAST which is a low-rank tensor completion

method to fill in the missing entries of the incomplete multi-aspect tensor stream. The method

manages to reduce the time complexity by reusing the previous decomposition that approxi-

mates the tensor stacked until new slices come in. Specifically, for an N-th order tensor stream,

DTD partitions the data into 2N sub-tensors for each time step and uses binary tuples (i1, � � �,

iN) 2Θ = {0, 1}N to denote the sub-tensors. Then, given that〚~A1; � � � ;
~AN〛 approximates

X ð0;���;0Þ≔X old
, one can reformulate the estimation error L of online tensor decomposition as

follows (see the notations from Preliminaries):

L ¼ m

�
�
�
�

��
~A1; � � � ;

~AN

��
�
��
Að0Þ

1
; � � � ;Að0ÞN

��
�
�
�
�

2

þ L0;

L0 ¼
X

ði1 ;���;iN Þ2Y ð0;���;0Þ

�
�
�
�X

ði1 ;���;iN Þ �
��
Aði1Þ

1
; � � � ;AðiN ÞN

��
�
�
�
�

2

;

ð10Þ

where μ 2 [0, 1] is the forgetting factor which alleviates the influence of the previous decompo-

sition error. Although DTD is an efficient method, it suffers from poor accuracy when an

incoming tensor has an entirely different pattern compared to previous tensors, as it still tries

to reuse the prior decomposition result. Our proposed method addresses the problem by using

Fig 2. Visualization of OnlineCP. In this figure, the length of time factor (with horizontal axis) becomes larger for each time step. Contrary to static

decomposition methods, OnlineCP reduces computational cost using approximation with an additional constraint: it updates only the non-temporal

mode, reusing the same temporal factor for all time steps. However, this leads to a substantial loss of accuracy if an incoming tensor has a different

theme compared to previous tensors (e.g., theme changes A! B, B0 ! C, or C! D). Thus, OnlineCP cannot achieve an accurate decomposition due

to the lack of consideration on the change of themes in data.

https://doi.org/10.1371/journal.pone.0267091.g002
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“re-decomposition” process and adapting quickly to sudden changes in data, and significantly

increases the accuracy of decomposition.

Proposed method

We propose DAO-CP, an accurate and efficient online algorithm for tensor stream

decomposition.

Overview

DAO-CP is a time and memory efficient algorithm for accurate online CP–ALS tensor decom-

position which adapts to data changes. The challenge of decomposing time-evolving tensors is

to improve accuracy without sacrificing speed and memory usage. Considering that the

themes of data change over time, we propose detecting the change points of themes and using

different strategies depending on the degree of change. The main challenges are as follows:

1. Reduce computational cost. How can we reduce the arithmetic cost for updating decom-

position factors of tensor streams?

2. Identify themes in data streams. How can we capture the latent themes in tensor streams

and detect the change points of them?

3. Increase decomposition accuracy. How can we exploit the detected change points of

themes and increase the decomposition accuracy?

To address the above challenges, we propose the following approaches.

1. Build an updatable framework for tensor stream. We use complementary matrices and

previous decomposition results recursively, where the complementary matrices are updated

only when there is a change in non-temporal factors, thus reducing the redundant

operations.

2. Detect data changes by tracking error norms. We continuously track the error norms of

incoming data slices in the tensor stream, detecting a sudden accuracy drop based on z-
score analysis, which we regard as a change point of themes.

3. Re-decompose the tensor stream when a new theme is detected. Once a sudden change

in theme is detected, we choose whether to refine or split the tensor stream depending on

the degree of changes. We also introduce memory rate to improve the refinement process.

These techniques determine how much information from the previous decomposition

should be retained, balancing the trade-off between accuracy and speed.

Update rules for DAO-CP

Let X ¼ ½X old
;X new

�
T

be an N-order time-evolving tensor, where X old
2 RIold

1
�����IN is the previ-

ous tensor data and Xnew
2 RInew

1
�����IN is a new tensor slice; we assume that the first mode is

the temporal mode. We design our update rules to efficiently decompose the tensor

X �〚A1; � � � ;AN〛, given the previous decomposition result X old
�〚~A1; � � � ;

~AN〛. We

partition the temporal factor matrix A1 into old and new parts as A1 ¼ ½A
ð0Þ

1
;Að1Þ

1
�
T

using

Að0Þ
1
2 RIold

1
�R and Að1Þ

1
2 RInew

1
�R, where R is the decomposition rank.

In order to consider the degree of change in themes, we introduce the memory rate ρ 2 [0.5,

1] which determines how much weight to assign to the decomposition of the previous tensor
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data. We define the estimation error L as a restricted form of the one from DTD [15], where

the non-temporal modes of the tensor stream are fixed:

L ¼
r

2

�
�
�
�

��

~A1; � � � ;
~AN

��

�

��

Að0Þ
1
; � � � ;AN

���
�
�
�

2

þ
1

2

�
�
�
�X

new
�

��

Að1Þ
1
; � � � ;AN

���
�
�
�

2

: ð11Þ

The optimization of the estimation error L is based on CP-ALS [14, 20]. Note that we simplify

the estimation error from DTD by setting the changes in non-temporal modes to zeros because

there is a change only in the temporal mode for our problem. The update rules to minimize L
in (11) for each factor matrix are derived as follows:

Að0Þ
1
 ~A1ð⊛k6¼1

~A>k AkÞð⊛k6¼1A
>

k AkÞ
y
;

Að1Þ
1
 X new

ð1Þ
ð
J

k6¼1
AkÞð⊛k6¼1A

>

k AkÞ
y
;

Ai6¼1  ½r
~Aið⊛k6¼1;i

~A>k AkÞ
~A>

1
Að0Þ

1
þXnew

ðiÞ ð
J

k6¼1;iAkÞ � Að1Þ
1
�

� ½ð⊛k6¼1;iA
>

k AkÞðrA
ð0Þ

1
>Að0Þ

1
þ Að1Þ

1
>Að1Þ

1
Þ�
y
:

Note that we also update the prior temporal factors to further increase the accuracy of decom-

position. If the previous temporal factors are not updated, they harm the accuracy of method

whenever there is a change of theme because they are optimized only for the previous theme of

the data. However, it is computationally demanding to directly apply these recursive processes.

To address the problem, we introduce two complementary matrices G and H,

G ¼⊛k6¼1
~A>k Ak; H ¼⊛k6¼1A

>

k Ak; ð12Þ

where G and H are updated only when there is a change in non-temporal factors, thus reduc-

ing the redundant computations. This leads to the following modified update rules:

Að0Þ
1
 ~A1GH

y; ð13Þ

Að1Þ
1
 X new

ð1Þ
ð
J

k6¼1
AkÞH

y; ð14Þ

Ai6¼1  ½r
~AiðG� ~A>i AiÞ⊛~A>

1
Að0Þ

1
þXnew

ðiÞ ð
J

k6¼1;iAkÞ � Að1Þ
1
�

� ½ðH� A>i AiÞ⊛ðrA
ð0Þ

1
>Að0Þ

1
þ Að1Þ

1
>Að1Þ

1
Þ�
y
:

ð15Þ

The overall update process is outlined in Algorithm 1.

Algorithm 1: DAO-CP Alternating Least Square (DAO-CP-ALS)

Input: Factors from old tensors 〚~A1; � � � ;
~AN〛, new tensor slice Xnew,

memory rate ρ, and number of ALS iterations niter
Output: Updated factors 〚A1, � � �, AN〛
1 Initialize complementary matrices G and H by (12)
2 for n  1 to niter do
3 Update Að1Þ

1
using (14) // latter part of temporal factor A1

4 for Ai6¼1 2 non-temporal factors do
5 Update Ai, G and H using (15)
6 Update Að0Þ

1
using (13) // former part of temporal factor A1
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Change points detection with local error norm

The key of our proposed method is to detect change points of themes in tensor streams and

thereby adapt quickly to abrupt changes in data. To do this, we continuously track the decom-

position error of tensor streams and detect a sudden accuracy drop which we regard as a

change point of themes. Such an accuracy drop is captured by measuring local error norm E local

for the new tensor slice and its decomposition result:

E local≔
�
�
�
�X

new
�
��
Að1Þ

1
; � � � ;AN

��
�
�
�
�

2

: ð16Þ

We assume that E local follows a normal distribution E local � N ðm; s2Þ and keep track of its

mean mðE localÞ and variance s2ðE localÞ to detect outliers. Note that we should update the mean

and variance in an online manner. This is achievable by using Welford’s algorithm [24, 25],

which provides accurate estimates of mean and variance without the necessity of keeping the

entire data. Moreover, the method requires only one pass of given data in order to compute

their sample mean and variance. Using Welford’s algorithm, we detect outliers in the current

local error norm by z-score analysis of the following criterion:

z-score ¼
E local � mðE localÞ

sðE localÞ
> L; ð17Þ

where L is a threshold of anomaly. Changing the value of L, one can fine-tune the criterion on

whether a new tensor slice is similar to the previous tensors or not.

Re-decomposition process

Once a sudden change of theme is detected by z-score analysis, DAO-CP exploits this informa-

tion to increase the decomposition accuracy. As a new tensor slice is stacked for each time

step, DAO-CP updates the factor matrices following the optimization scheme described in

Algorithm 1. It then computes the z-score in the local error norm distribution and performs

“re-decomposition” depending on the score. Tracking the distribution of local error norm and

setting the z-score criteria enable DAO-CP to automatically choose the best strategy between

split and refinement processes depending on the degree of changes. Fig 3 illustrates the intui-

tion of the two processes, and Table 2 shows the criterion for each process.

Split process. What if an incoming tensor slice has an entirely different theme compared

to previous tensors? In this case, reusing the prior results of decomposition will cause a sub-

stantial loss of accuracy. To address the problem, we design a split process which divides the

streaming tensor into separate tensors of different themes, using a threshold Ls. Despite extra

costs of space and time due to re-initialization, the split process enables DAO-CP to success-

fully avoid the unexpected accuracy drop (lines 8-13 in Algorithm 2).

Refinement process. The refinement process is used to update the decomposition result

when there is only a modest difference in the theme from the previous tensor. We use the

hyperparameter Lr to fine-tune the refinement criterion on whether an incoming tensor slice

is similar to the previous tensors or not. We use the memory rate 1 − ρ because we need to

focus more on the new slice (note that 1 − ρ ⩽ ρ since ρ 2 [0.5, 1]). The ALS operation also

takes the z-score and is performed extra more times accordingly, because a higher z-score

implies that there is a more abrupt change in data. As a result, these techniques determine how

much information from the previous decomposition should be retained, balancing the trade-

off between accuracy and running time (lines 14-16 in Algorithm 2). The full computation of

DAO-CP is outlined in Algorithm 2.
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Algorithm 2: Data-Adaptive Online CP Decomposition (DAO-CP)
Inpit: Tensor stream X stream, memory rate ρ, and number of ALS iterations
niter
Output: Decomposition factor set S ¼ f〚A1; � � � ;AN〛g
1 Xnew  new slice from X stream

2 Initialize 〚~A1; � � � ;
~AN〛 using CP decomposition of Xnew

Fig 3. Visualization of split and refinement processes of DAO-CP. When the z-score exceeds the split threshold Ls (e.g., change from theme A to B),

DAO-CP re-initializes the new tensor slice using the static CP decomposition. When the z-score is between Lr and Ls (e.g, change from theme B to B0),
the refinement process determines how much information from the previous factors should be retained. Consequently, DAO-CP provides both fast and

accurate decomposition for tensor streams even with inconsistent temporal patterns.

https://doi.org/10.1371/journal.pone.0267091.g003

Table 2. Execution criteria for split and refinement processes. Ls is the threshold of splitting and initializing the

decomposition, and Lr is the threshold of refining the previous decomposition. By changing the two hyperparameters,

we can fine-tune the re-decomposition process to balance the trade-off between accuracy and speed.

Process Criterion

Split z> Ls

Refinement Lr < z ⩽ Ls

- z ⩽ Lr

https://doi.org/10.1371/journal.pone.0267091.t002
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3 Calculate error norm E local between Xnew and 〚~A1; � � � ;
~AN〛

4 Initialize Welford with E local

5 for Xnew from X stream do
6 〚A1, � � �, AN〛  DAO-CP-ALS ð〚~A1; � � � ;

~AN〛; Xnew; r; niterÞ

7 Calculate error norm E local between Xnew and 〚A1, � � �, AN〛
/� Split Process �/

8 if Welford z-score ðElocalÞ > Ls then
9 Store the previous factors to S
10 Initialize 〚~A1; � � � ;

~AN〛 using CP decomposition of Xnew

11 Calculate error norm E local between Xnew and 〚~A1; � � � ;
~AN〛

12 Initialize Welford with E local

13 continue
/� Refinement Process �/

14 if Ls⩾Welfordz � score ðElocalÞ > Lr then
15 〚A1, � � �, AN〛  DAO-CP-ALS
ð〚~A1; � � � ;

~AN〛; Xnew; 1 � r; ð1þ z � scoreÞ � niterÞ

16 Calculate error norm E local between Xnew and 〚A1, � � �, AN〛
17 Update Welford with E local

18 〚~A1; � � � ;
~AN〛 〚A1; � � � ;AN〛

19 Store the previous factors to S

Theoretical analysis

We analyze the computational complexity of DAO-CP. The following symbols are used for the

analysis: N (dimensionality), R (rank), Inew
1

(time length of the new data slice), Iold
1

(time length

of the formerly stacked data), Ii6¼1 (mode length of the non-temporal i-th mode), and niter

(number of ALS iterations).

Table 3 summarizes the comparison of DAO-CP to existing tensor decomposition meth-

ods. We find that DAO-CP has the lowest arithmetic cost among the methods except Onli-

neCP. Note that even though OnlineCP has lower complexity than our proposed method, it

suffers from poor accuracy due to the lack of consideration on temporal change of data, which

limits its usage in practice (see Fig 4).

Lemma 1. The time complexity of initializing the complementary matrices G and H by (12) is
O(R2 ∑k6¼1 Ik).

Proof. Because the operands ~A>k Ak and A>k Ak in Hadamard operations are R × R matrices, it

takes O(R2 � Ik) for multiplication of ~A>k 2 R
R�Ik and Ak 2 R

Ik�R
. Thus, the total arithmetic

complexity of computing the matrices G and H is given by O(R2 � ∑k 6¼ 1 Ik).
Lemma 2. The time complexity of updating the factor matrix Að0Þ

1
by (13) is OðR2Iold

1
þ R3Þ.

Proof. Finding the pseudo-inverse matrix H† of H takes O(R3), and the matrix multiplica-

tion of ~A1 2 R
Iold
1
�R and G;Hy 2 RR�R requires OðR2 � Iold

1
Þ operations.

Lemma 3. The time complexity of updating the factor matrix Að1Þ
1

by (14) is
OðRInew

1

Q
k6¼1

Ik þ R2Inew
1
þ R3Þ.

Table 3. Comparison of existing tensor decomposition methods (Full–CP refers to the static CP decomposition method).

Computational Complexity Online Updatable Adaptive

Full–CP [26] OðNRIold
1

Q
i6¼1

Ii þ NRInew
1

Q
i6¼1

IiÞ ✔

OnlineCP [14] OðNRInew
1

Q
i6¼1

IiÞ ✔
DTD [15] OðNRInew

1

Q
i6¼1

Ii þ NR2
P

iIi þ NR3Þ ✔ ✔
DAO-CP OðNRInew

1

Q
i6¼1

Ii þ R2
P

iIi þ NR3Þ ✔ ✔ ✔

https://doi.org/10.1371/journal.pone.0267091.t003
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Proof. The Khatri-Rao product ð
J

k6¼1
AkÞ 2 R

Q
k6¼1

Ik�R
consumes O(R � ∏k6¼1 Ik). We com-

pute the matrix multiplication in the order of appearance, and its time complexity is

OðR � Inew
1
�
Q

k6¼1
Ik þ R2 � Inew

1
Þ. This, combined with the complexity O(R3) of finding H†, yields

the desired result.

Lemma 4. The time complexity of updating Ai6¼1, G and H by (15) is OðRInew
1

Q
k6¼1

Ik þ R2Iiþ

R3Þ.

Proof. Computing Ai
>Ai, A

ð0Þ

1
>Að0Þ

1
and Að1Þ

1
>Að1Þ

1
require O(R2 � Ii), OðR2 � Iold

1
Þ and OðR2 �

Inew
1
Þ time costs, respectively. Constructing the pseudo-inverse matrix costs O(R3) since its size

is R × R. For the first part before the pseudo-inverse, the first term is calculated in O(R2 � Ii +

R2 � Iold) time, and the second term is computed similarly to Lemma 3 with OðR � Inew
1

Q
k6¼1

IkÞ

complexity. Combining those results, we conclude the proof.

Theorem 5 (Complexity of DAO-CP-ALS). The time complexity of DAO–CP–ALS (Algo-
rithm 1) is OðniterðNRInew

1

Q
i6¼1

Ii þ R2
P

iIi þ NR3ÞÞ.

Proof. The computational cost of updating all the non-temporal factor matrices {Ai 6¼ 1} is
P

i6¼1
OðRInew

1

Q
k6¼1

Ik þ R2Ii þ R3Þ by Lemma 4, which can be written as

OðNRInew
1

Q
i6¼1

Ii þ R2
P

i6¼1
Ii þ NR3Þ. Combining the complexities of updating {Ai} by Lemmas

2 and 3 gives the following arithmetic cost for a single ALS iteration:

OðNRInew
1

Q
i6¼1

Ii þ R2
P

iIi þ NR3Þ. Thus, including the initialization cost from Lemma 1, we

obtain the desired result.

Experiments

In this section, we experimentally evaluate DAO-CP to answer the following questions.

Fig 4. Reconstruction errors: Global (upper) and local (lower) fitness. Since Full–CP is not an online method, we evaluate its fitness whenever a new

slice is added. Detecting the change points of theme, DAO-CP successfully increases the accuracy of decomposition, which is even higher than that of

Full–CP.

https://doi.org/10.1371/journal.pone.0267091.g004
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• Q1. Reconstruction error. How accurately does DAO-CP decompose real-world tensor

streams compared to existing methods?

• Q2. Time cost. How much does DAO-CP improve the speed of tensor stream decomposi-

tion compared to existing online methods?

• Q3. Effect of thresholds Lr and Ls. How do the different choices of Lr and Ls for re-decom-

position criteria affect the performance of DAO-CP?

• Q4. Refinement and split processes. How does each of the re-decomposition processes

affect the performance of DAO-CP on real-world datasets?

In the following, we describe the experimental settings and answer the questions with the

experimental results.

Experimental settings

All the experiments are conducted in a workstation with a single CPU (Intel(R) Xeon(R) CPU

E5-2630 v4 @ 2.20GHz).

Datasets. We use four real-world tensor streams and a synthetic tensor stream summa-

rized in Table 4, where the first mode of each tensor corresponds to the temporal mode. We

construct a tensor stream by splitting an original tensor into slices along the time mode (first

mode); e.g., we make 41 slices from Sample Video dataset, where each slice is of dimension (5,

240, 320, 3).

• Sample Video dataset is a series of animation frames with RGB values. For this dataset, we

expect that changes of theme occur when an object starts moving or a scene changes.

• Stock Price includes data on 140 stocks listed on the Korea Stock Price Index 200 (KOSPI

200) from Jan 2, 2008 to June 30, 2020, where each stock contains five features: adjusted

opening price, closing price, highest price, lowest price, and trading volume. Changes of

theme may occur when real-world events affect the rise or fall of stock markets.

• Airport Hall is a video recorded in an airport, initially used to verify OLSTEC [17, 27]. We

expect that a sudden change of theme occurs when a crowd of people surges toward the air-

port during flight departure or arrival time.

• Korea Air Quality dataset consists of daily air pollutant levels for various locations in Seoul,

South Korea from Sep 1, 2018 to Sep 31, 2019. The themes may continuously change

depending on weather environment.

• Synthetic is made of concatenated tensors, which is the summation Tmain + Ttheme + Tnoise of

three tensors {Tmain, Ttheme, Tnoise}, each referring to a fN ð0; 100Þ, N ð0; 10Þ, N ð0; 1Þg

Table 4. Summary of datasets.

Datasets Order Dimensions Slice Length Rank Ls Lr
Sample Video1 4 (205, 240, 320, 3) 5 30 6.0 2.0

Stock Price1 3 (3089, 140, 5) 3 20 6.0 5.0

Airport Hall1 3 (200, 144, 176) 10 20 0.5 0.1

Korea Air Quality1 3 (9479, 323, 6) 100 20 2.0 1.3

Synthetic1 4 (1000, 10, 20, 30) 10 30 1.2 1.1

1 https://github.com/snudatalab/DAO-CP/

https://doi.org/10.1371/journal.pone.0267091.t004
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normally distributed randomized tensor, respectively, of size (1000, 10, 20, 30). Note that we

simulate the changes of theme using the tensor Ttheme.

Competitors. We compare DAO-CP with existing dynamic tensor decomposition meth-

ods including OnlineCP [14] and DTD [15], as well as with the static CP decomposition

method, Full–CP [20]. All the methods are implemented in Python3 using the TensorLy

library.

Parameters. The parameters Ls and Lr of DAO-CP are set to the values listed in Table 4.

The section “Effect of Thresholds Ls and Lr” is an exception, where we vary the two values to

investigate the effect of different thresholds. We set the memory rate as ρ = 0.8 for all the

experiments.

Evaluation measure. To evaluate our proposed method, we use local and global error

norms E local and Eglobal, as well as the corresponding “fitness” scores F local and F global, which are

defined as follows:

E local ¼ kX
new
� 〚Að1Þ

1
; � � � ;AN〛k

2
; Eglobal ¼ kX � 〚A1; � � � ;AN〛k

2
;

F local ¼ 1 �
E local

kX new
k
; F global ¼ 1 �

Eglobal

kXk
:

F local denotes the fitness for an incoming data slice at each time step, while F global is the fitness

for whole tensors. They are the normalized versions of error norms with respect to data size,

designed to compare the decomposition accuracy for multiple datasets with different sizes.

Running time. We evaluate the speed of each method in terms of local running time,

which is the elapsed time for decomposing the current data slice. Because Full–CP is not an

online algorithm, we assume that it decomposes the entire tensor whenever a new data slice

comes in.

Reconstruction error

We compare DAO-CP to its competitors in terms of fitness, varying the decomposition rank

in Fig 4. The average of local fitness is the mean of F local that is computed at every time step.

Note that DAO-CP shows higher fitness than the existing methods in most cases, regardless of

ranks.

Running time

DAO-CP allows an accurate tensor factorization by exploiting the characteristic of data and

detecting change points. However, this results in a slightly longer running time due to the re-

decomposition process. Fig 5 shows the running times of DAO-CP and other methods for var-

ious ranks. Note that DAO-CP has moderate running times between the static and dynamic

decomposition methods, showing promising speeds comparable to the other dynamic algo-

rithms (DTD and OnlineCP) and significantly faster than the static method (Full–CP).

Effect of thresholds Lr and Ls
We change the values of Ls and Lr to investigate the effect of split and refinement processes.

Table 5 shows the results, where the number of refinement or split points changes as Lr and Ls

vary. Note that both the processes lead to more accurate decomposition with extra time costs,

and among them the split process has bigger trade-offs because it requires re-initialization. As
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a result, the more parts the tensor is split into (smaller Ls), the more accurate decomposition

DAO-CP yields with extra costs of time. More refinement processes (smaller Lr) also have a

similar effect, although the trade-offs are relatively small. In contrast to the split process, it

requires more memory to store intermediate data such as auxiliary matrices G and H. In a

practical standpoint, these observations are very useful because one can benefit from the

hyperparameter tuning when there is a particular importance in one of accuracy, speed, or

memory usage.

Refinement and split processes

Recall that the split process is used to start a new decomposition when an entirely different

theme is detected, while the refinement process is used when there is only a modest difference

from the previous decomposition. Fig 1 validates the importance of these intuitions, showing

that DAO-CP results in remarkable performance for the video datasets with different scenes

and object movements.

Fig 5. Time cost: Average of local running time. Since Full–CP is not an online method, we evaluate its fitness whenever a new slice is added. Note

that DAO-CP results in a promising speed comparable to DTD and OnlineCP with much more accurate decomposition, and significantly faster than

Full–CP.

https://doi.org/10.1371/journal.pone.0267091.g005

Table 5. Effect of thresholds Lr and Ls. The memory usage means the summation of byte allocation to store intermediate data to calculate next decomposition results (e.g.

auxiliary matrices G and H). We use Korea Air Quality dataset with rank 20, and change Lr and Ls to investigate the effect of refinement and split processes. Note that the

lower the thresholds is set, the more frequently the re-decomposition processes are executed. Thus, one can benefit from this observation when there is a particular impor-

tance in one of accuracy, speed, or memory usage depending on target tasks.

Process Lr Ls # of executions Running time Memory usage Fitness

None - - 0 12.72 sec 1,649 KB 80.50%

Refinement 2.2 - 6 12.48 sec 1,698 KB 80.62%

2.0 - 8 12.56 sec 1,698 KB 80.65%

1.8 - 12 12.96 sec 1,954 KB 80.67%

1.6 - 14 13.25 sec 2,082 KB 80.70%

1.4 - 15 13.39 sec 2,082 KB 80.72%

Split - 1.8 5 24.05 sec 949 KB 82.17%

- 1.6 36 125.24 sec 405 KB 85.27%

- 1.4 45 147.56 sec 405 KB 85.72%

- 1.2 57 184.39 sec 405 KB 86.34%

- 1.0 65 211.42 sec 277 KB 87.56%

https://doi.org/10.1371/journal.pone.0267091.t005

PLOS ONE DAO-CP: Data-Adaptive Online CP decomposition for tensor stream

PLOS ONE | https://doi.org/10.1371/journal.pone.0267091 April 14, 2022 15 / 18

https://doi.org/10.1371/journal.pone.0267091.g005
https://doi.org/10.1371/journal.pone.0267091.t005
https://doi.org/10.1371/journal.pone.0267091


To further investigate the effects of split and refinement processes, we consider the follow-

ing question: for each time step (or data slice), how does the re-decomposition process affect

the running time and local error norm? With Sample Video dataset, we compare the running

time and local error norm of DAO-CP to its competitors in Fig 6. We observe that both split

and refinement processes significantly reduces the local error norm with only a modest sacri-

fice of running time.

Conclusions

In this paper, we propose DAO-CP, an efficient algorithm for decomposing time-evolving ten-

sors. DAO-CP automatically detects a change point of theme in tensor streams and decides

whether to re-decompose the tensors or not. Experimental results show that the proposed

DAO-CP outperforms the current state-of-the-art methods on both synthetic and real-world

datasets. We also investigate the effect of hyperparameters of our proposed method and dem-

onstrate the advantages of trading-off between accuracy, speed, and memory usage. Future

Fig 6. Refinement and split processes: Effects of split (solid line) and refinement (dashed line) processes in terms of local error norm (upper)

and running time (lower). Each re-decomposition process (at split point) significantly reduces the local error norm with only a modest sacrifice of

running time (e.g., vertical line connecting Pprev, Pnext, Qprev, and Qnext). Note that DAO-CP runs slower than the other dynamic methods

(OnlineCP and DTD) only when one of split or refinement processes is performed to increase the accuracy (horizontal line R: average running time

of competitor methods).

https://doi.org/10.1371/journal.pone.0267091.g006

PLOS ONE DAO-CP: Data-Adaptive Online CP decomposition for tensor stream

PLOS ONE | https://doi.org/10.1371/journal.pone.0267091 April 14, 2022 16 / 18

https://doi.org/10.1371/journal.pone.0267091.g006
https://doi.org/10.1371/journal.pone.0267091


works include extending our method for simultaneously decomposing many related time-

evolving tensors.
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